The Organization of Production and Trade

Chia-Hui Lu, City University of Hong Kong
Shin-Kun Peng, Academia Sinica/NTU
Ping Wang, Washington University in St. Louis/NBER

May 2009
Observation: Trade Integration

- Rising globalization in trade, \([(\text{export}+\text{import})/2]/\text{GDP} \) (IFS data):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>14.5</td>
<td>16.5</td>
<td>21.6</td>
<td>24.0</td>
<td>33.5</td>
</tr>
<tr>
<td>Japan</td>
<td>8.8</td>
<td>8.3</td>
<td>11.8</td>
<td>8.4</td>
<td>10.1</td>
</tr>
<tr>
<td>U.K.</td>
<td>15.3</td>
<td>16.5</td>
<td>20.3</td>
<td>20.6</td>
<td>29.0</td>
</tr>
<tr>
<td>U.S.</td>
<td>3.4</td>
<td>4.1</td>
<td>8.8</td>
<td>8.0</td>
<td>13.1</td>
</tr>
</tbody>
</table>
Observation: production disintegration

- Rising production fragmentation, Hummels-Ishii-Yi (2001)

VS index of imported input content of export goods (dashline):
Main Issues

- Is vertical integration more efficient than middle product trade?
Main Issues

- Is vertical integration more efficient than middle product trade?
 - D’Aveni-Ravenscraft (1994) find that vertical integration economizes on headquarter and R&D expenses but raise production costs, thus resulting only marginal efficiency gain.
Main Issues

- Is vertical integration more efficient than middle product trade?
 - D’Aveni-Ravenscraft (1994) find that vertical integration economizes on headquarter and R&D expenses but raise production costs, thus resulting only marginal efficiency gain.

- Why are different organizational forms be adopted in countries at similar development stages?
Main Issues

- Is vertical integration more efficient than middle product trade?
 - D’Aveni-Ravenscraft (1994) find that vertical integration economizes on headquarter and R&D expenses but raise production costs, thus resulting only marginal efficiency gain.

- Why are different organizational forms be adopted in countries at similar development stages?
 - US has global-sourced much more than Japan (4% vs. 1%; Feenstra-Hanson 1999, Tomiura 2005)
Main Issues

- Is vertical integration more efficient than middle product trade?
 - D’Aveni-Ravenscraft (1994) find that vertical integration economizes on headquarter and R&D expenses but raise production costs, thus resulting only marginal efficiency gain.

- Why are different organizational forms be adopted in countries at similar development stages?
 - US has global-sourced much more than Japan (4% vs. 1%; Feenstra-Hanson 1999, Tomiura 2005)
 - Taiwanese industry is far less integrated than Korea (Feenstra-Hamilton-Huang 2001)
Main Issues

- Is vertical integration more efficient than middle product trade?
 - D’Aveni-Ravenscraft (1994) find that vertical integration economizes on headquarter and R&D expenses but raise production costs, thus resulting only marginal efficiency gain.

- Why are different organizational forms be adopted in countries at similar development stages?
 - US has global-sourced much more than Japan (4% vs. 1%; Feenstra-Hanson 1999, Tomiura 2005)
 - Taiwanese industry is far less integrated than Korea (Feenstra-Hamilton-Huang 2001)
 - The performance of these economies need not differ much
Main Issues

- Is vertical integration more efficient than middle product trade?
 - D’Aveni-Ravenscraft (1994) find that vertical integration economizes on headquarter and R&D expenses but raise production costs, thus resulting only marginal efficiency gain.

- Why are different organizational forms be adopted in countries at similar development stages?
 - US has global-sourced much more than Japan (4% vs. 1%; Feenstra-Hanson 1999, Tomiura 2005)
 - Taiwanese industry is far less integrated than Korea (Feenstra-Hamilton-Huang 2001)
 - The performance of these economies need not differ much

- What are the key factors inducing outsourcing in equilibrium when full integration is an alternative?
Vertical mergers:
Vertical mergers:

- Helpman (1984) allows firms to choose plant locations to determine multinational trade patterns
Vertical mergers:
- Helpman (1984) allows firms to choose plant locations to determine multinational trade patterns
- Salinger (1988) outlines main effects of vertical mergers
Vertical mergers:

- Helpman (1984) allows firms to choose plant locations to determine multinational trade patterns
- Salinger (1988) outlines main effects of vertical mergers
- McLaren (2000) shows that strategic complementarity of firms’ decisions on organizational structure may result in coexistence of separated and integrated equilibria
Vertical mergers:
- Helpman (1984) allows firms to choose plant locations to determine multinational trade patterns
- Salinger (1988) outlines main effects of vertical mergers
- McLaren (2000) shows that strategic complementarity of firms’ decisions on organizational structure may result in coexistence of separated and integrated equilibria
- Yi (2003) studies both theoretically and quantitatively middle product trade with vertical specialization
Vertical mergers:

- Helpman (1984) allows firms to choose plant locations to determine multinational trade patterns
- Salinger (1988) outlines main effects of vertical mergers
- McLaren (2000) shows that strategic complementarity of firms’ decisions on organizational structure may result in coexistence of separated and integrated equilibria
- Yi (2003) studies both theoretically and quantitatively middle product trade with vertical specialization
- Peng-Thisse-Wang (2006) constructs a dynamic general equilibrium framework to characterize vertical integration with perfectly mobile skilled labor
Product outsourcing:
Product outsourcing:

Ethier (1986) shows that arm’s length contracting (such as outsourcing) emerges when information exchanges between the principal and the agent are simple.
Literature

- **Product outsourcing:**
 - Ethier (1986) shows that arm’s length contracting (such as outsourcing) emerges when information exchanges between the principal and the agent are simple.
Product outsourcing:

- Ethier (1986) shows that arm’s length contracting (such as outsourcing) emerges when information exchanges between the principal and the agent are simple.
Product outsourcing:

- Ethier (1986) shows that arm’s length contracting (such as outsourcing) emerges when information exchanges between the principal and the agent are simple.
 - low search and communication costs and severe in-house shirking problems (Grossman and Helpman 2002, 2005; Grossman-Rossi-Hansberg 2008)
Product outsourcing:

- Ethier (1986) shows that arm’s length contracting (such as outsourcing) emerges when information exchanges between the principal and the agent are simple.
 - low search and communication costs and severe in-house shirking problems (Grossman and Helpman 2002, 2005; Grossman-Rossi-Hansberg 2008)
 - enhanced outsourcers’ bargaining strength (Antràs and Helpman 2004)
Product outsourcing:
- Ethier (1986) shows that arm’s length contracting (such as outsourcing) emerges when information exchanges between the principal and the agent are simple.
 - enhanced outsourcers’ bargaining strength (Antràs and Helpman 2004).
 - higher outsourcers’ ability to monitor subcontractors’ shirking problem (Grossman and Helpman 2004).
Literature

- **Product outsourcing:**
 - Ethier (1986) shows that arm’s length contracting (such as outsourcing) emerges when information exchanges between the principal and the agent are simple.
 - low search and communication costs and severe in-house shirking problems (Grossman and Helpman 2002, 2005; Grossman-Rossi-Hansberg 2008)
 - enhanced outsourcers’ bargaining strength (Antràs and Helpman 2004)
 - higher outsourcers’ ability to monitor subcontractors’ shirking problem (Grossman and Helpman 2004)
 - better match with local preferences and sufficient local capital (Riezman-Wang 2008)
Purpose of this Paper

- Develop a unified framework to identify necessary and sufficient conditions for the emergence of a particular organizational structure – *separation* with middle-product trade, *vertical integration* or *global sourcing*
Purpose of this Paper

- Develop a unified framework to identify necessary and sufficient conditions for the emergence of a particular organizational structure – *separation* with middle-product trade, *vertical integration* or *global sourcing*
 - Important to determine both the organization of trade and production: these organizational forms are mutually dependent
Develop a unified framework to identify necessary and sufficient conditions for the emergence of a particular organizational structure – separation with middle-product trade, vertical integration or global sourcing

Important to determine both the organization of trade and production: these organizational forms are mutually dependent

Important to consider all three structures: potential availability of one organizational structure can change the trade-off of the other two structures, thereby granting simple pairwise comparison in previous studies invalid
Purpose of this Paper

- Develop a unified framework to identify necessary and sufficient conditions for the emergence of a particular organizational structure – *separation* with middle-product trade, *vertical integration* or *global sourcing*

 - Important to determine both the organization of trade and production: these organizational forms are mutually dependent
 - Important to consider all three structures: potential availability of one organizational structure can change the trade-off of the other two structures, thereby granting simple pairwise comparison in previous studies invalid
 - Important to incorporate both comparative advantage and other organizational costs, especially for calibration analysis
Structure of the Model

- 3 theaters of economic activities: up-stream production (U), down-stream production (D), subcontracting (C)
Structure of the Model

- 3 theaters of economic activities: up-stream production (U), down-stream production (D), subcontracting (C)
- owners of U and D are risk averse, C is risk-neutral
Structure of the Model

- 3 theaters of economic activities: up-stream production (U), down-stream production (D), subcontracting (C)
- owners of U and D are risk averse, C is risk-neutral
- 2 types of workers: skilled (H), unskilled labor (L)
Structure of the Model

- 3 theaters of economic activities: up-stream production (U), down-stream production (D), subcontracting (C)
- owners of U and D are risk averse, C is risk-neutral
- 2 types of workers: skilled (H), unskilled labor (L)
- 2 components of production activities: designing/marketing (A), manufacturing (X)
Structure of the Model

- 3 theaters of economic activities: up-stream production (U), down-stream production (D), subcontracting (C)
- owners of U and D are risk averse, C is risk-neutral
- 2 types of workers: skilled (H), unskilled labor (L)
- 2 components of production activities: designing/marketing (A), manufacturing (X)
- 3 organizational structures (I and O are multinational, S feature middle product trade)
Structure of the Model

- 3 theaters of economic activities: up-stream production (U), down-stream production (D), subcontracting (C)
- owners of U and D are risk averse, C is risk-neutral
- 2 types of workers: skilled (H), unskilled labor (L)
- 2 components of production activities: designing/marketing (A), manufacturing (X)
- 3 organizational structures (I and O are multinational, S feature middle product trade)
 - Configuration S: domestic U produces upstream good, exports to the LDC, D who produces the final good
Structure of the Model

- 3 theaters of economic activities: up-stream production (U), down-stream production (D), subcontracting (C)
- owners of U and D are risk averse, C is risk-neutral
- 2 types of workers: skilled (H), unskilled labor (L)
- 2 components of production activities: designing/marketing (A), manufacturing (X)
- 3 organizational structures (I and O are multinational, S feature middle product trade)
 - Configuration S: domestic U produces upstream good, exports to the LDC, D who produces the final good
 - Configuration I: U becomes a multinational with complete ownership of the entire production line, producing upstream good and using foreign subsidiaries to manufacture the final good
Structure of the Model

- 3 theaters of economic activities: up-stream production \((U)\), down-stream production \((D)\), subcontracting \((C)\)
- owners of \(U\) and \(D\) are risk averse, \(C\) is risk-neutral
- 2 types of workers: skilled \((H)\), unskilled labor \((L)\)
- 2 components of production activities: designing/marketing \((A)\), manufacturing \((X)\)
- 3 organizational structures \((I\ and\ O\ are\ multinational,\ S\ feature\ middle\ product\ trade)\)
 - Configuration \(S\): domestic \(U\) produces upstream good, exports to the LDC, \(D\) who produces the final good
 - Configuration \(I\): \(U\) becomes a multinational with complete ownership of the entire production line, producing upstream good and using foreign subsidiaries to manufacture the final good
 - Configuration \(O\): \(U\) is a multinational, produces the middle product, offers it with blue print to the LDC subcontractor, who takes over the downstream manufacturing component
Organizational Costs

- Cost advantages/disadvantages under different organizational structure:

<table>
<thead>
<tr>
<th></th>
<th>Upstream CST Cost σ^S</th>
<th>Downstream Diversification Cost ν</th>
<th>Subcontractor Defect Cost δ</th>
<th>Offshore Cost Saving ζ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$\sigma^S > 0$</td>
<td>0</td>
<td>0</td>
<td>$\zeta^S \in [0, \zeta^O)$</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>$\nu > 0$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>$\sigma^O \in [0, \sigma^S)$</td>
<td>0</td>
<td>$\delta > 0$</td>
<td>$\zeta^O > 0$</td>
</tr>
</tbody>
</table>

Jones: $\delta = \sigma^O = \zeta^S = 0$ and σ^S includes only trade cost

Grossman-Helpman (2002, 05): $\nu = \delta = \zeta^S = \zeta^O = 0$, in-house labor shirking cost > 0

Grossman-Helpman (2004): $\nu = \delta = \zeta^S = \zeta^O = 0$, subcontractor shirking cost > 0
Organizational Costs

- Cost advantages/disadvantages under different organizational structure:

<table>
<thead>
<tr>
<th></th>
<th>Upstream CST Cost</th>
<th>Downstream Diversification Cost</th>
<th>Subcontractor Defect Cost</th>
<th>Offshore Cost Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$\sigma^S > 0$</td>
<td>0</td>
<td>0</td>
<td>$\zeta^S \in [0, \zeta^O)$</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>$\nu > 0$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>$\sigma^O \in [0, \sigma^S)$</td>
<td>0</td>
<td>$\delta > 0$</td>
<td>$\zeta^O > 0$</td>
</tr>
</tbody>
</table>

- Jones: $\delta = \sigma^O = \zeta^S = 0$ and σ^S includes only trade cost
Organizational Costs

- Cost advantages/disadvantages under different organizational structure:

<table>
<thead>
<tr>
<th></th>
<th>Upstream CST Cost</th>
<th>Downstream Diversification Cost</th>
<th>Subcontractor Defect Cost</th>
<th>Offshore Cost Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$\sigma^S > 0$</td>
<td>0</td>
<td>0</td>
<td>$\zeta^S \in [0, \zeta^O)$</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>$\nu > 0$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>$\sigma^O \in [0, \sigma^S)$</td>
<td>0</td>
<td>$\delta > 0$</td>
<td>$\zeta^O > 0$</td>
</tr>
</tbody>
</table>

- Jones: $\delta = \sigma^O = \zeta^S = 0$ and σ^S includes only trade cost
- Grossman-Helpman (2002,05): $\nu = \delta = \zeta^S = \zeta^O = 0$, in-house labor shirking cost > 0
Organizational Costs

- Cost advantages/disadvantages under different organizational structure:

<table>
<thead>
<tr>
<th></th>
<th>Upstream CST Cost</th>
<th>Downstream Diversification Cost</th>
<th>Subcontractor Defect Cost</th>
<th>Offshore Cost Saving</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$\sigma^S > 0$</td>
<td>0</td>
<td>0</td>
<td>$\zeta^S \in [0, \zeta^O)$</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>$\nu > 0$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>$\sigma^O \in [0, \sigma^S)$</td>
<td>0</td>
<td>$\delta > 0$</td>
<td>$\zeta^O > 0$</td>
</tr>
</tbody>
</table>

- Jones: $\delta = \sigma^O = \zeta^S = 0$ and σ^S includes only trade cost
- Grossman-Helpman (2002,05): $\nu = \delta = \zeta^S = \zeta^O = 0$, in-house labor shirking cost > 0
- Grossman-Helpman (2004): $\nu = \delta = \zeta^S = \zeta^O = 0$, subcontractor shirking cost > 0
Production Technologies

- No substitution between design & manufacturing
Production Technologies

- No substitution between design & manufacturing
- Production of the middle product ($\sigma > 0$ only in S):

$$A^U = A_0^U \left[(1 - \sigma)H_A^U \right]^{1/2}$$

$$X^U = \min \left\{ A^U, \theta H_X^U, L^U \right\}$$

Under outsourcing, international monitoring or law enforcement is difficult, so product defection implies:

Revenue = $POXO$ with probability $(1 - \delta)$

0 with probability δ
Production Technologies

- No substitution between design & manufacturing
- Production of the middle product ($\sigma > 0$ only in S):
 \[
 A^U = A_0^U \left[(1 - \sigma)H_A^U \right]^{1/2}
 \]
 \[
 X^U = \min \left\{ A^U, \theta H_X^U, L^U \right\}
 \]
- Production of the consumable ($A_0^U > A_0^D, \nu > 0$ under I):
 \[
 A^D = A_0^D \left(H_A^D \right)^{1/2}
 \]
 \[
 X^D = \min \left\{ A^D, \gamma X^U, \gamma(1 - \nu)L^D \right\}
 \]
Production Technologies

- No substitution between design & manufacturing
- Production of the middle product ($\sigma > 0$ only in S):

 $$A^U = A_0^U \left[(1 - \sigma)H_A^U\right]^{1/2}$$

 $$X^U = \min \left\{ A^U, \theta H_X^U, L_U \right\}$$

- Production of the consumable ($A_0^U > A_0^D, \nu > 0$ under I):

 $$A^D = A_0^D \left(H_A^D\right)^{1/2}$$

 $$X^D = \min \left\{ A^D, \gamma X^U, \gamma(1 - \nu) L^D \right\}$$

- Under outsourcing, international monitoring or law enforcement is difficult, so product defection implies:

 $$\text{Revenue} = \begin{cases}
 P^O X^O & \text{with probability } (1 - \delta) \\
 0 & \text{with probability } \delta
 \end{cases}$$
Main Decisions

- The game tree:

\[
\begin{align*}
\text{separation} & \quad q, X \quad (S) \\
\text{integration} & \quad X \quad (I) \\
\text{v-merger} & \quad \text{outsourcing} \quad X, V \quad (c_0, c_1) \\
& \quad C \text{ rejects} \quad (I) \\
& \quad C \text{ accepts} \quad (O)
\end{align*}
\]
Main Decisions

- Separation with middle-product trade (Configuration S):
Main Decisions

- Separation with middle-product trade (Configuration S):
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
Main Decisions

- Separation with middle-product trade (Configuration S):
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
 - Presence of double holdup problem

Presence of double holdup problem
Main Decisions

- Separation with middle-product trade (Configuration S):
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
 - Presence of double holdup problem
- Vertical Integration (Configuration I):
Main Decisions

- **Separation with middle-product trade (Configuration S):**
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
 - Presence of double holdup problem

- **Vertical Integration (Configuration I):**
 - U makes a take-it-or-leave-it offer to D, which determines the payment S^I for acquiring the right of operating D

Vertical Integration:
- Vertical Integration (Configuration I):
 - U makes a take-it-or-leave-it offer to D, which determines the payment S^I for acquiring the right of operating D
 - Presence of double holdup problem

Global outsourcing (Configuration O):
- Global outsourcing (Configuration O):
 - U pays S^O to acquire the right of operating D and then outsources the manufacturing component of final consumable good production to a subcontractor C in a LDC
 - U makes a take-it-or-leave-it offer to C with a mixed contract $c_0 + c_1 P O X O$
 - No holdup problem

C hires Southern unskilled workers at a cheaper wage, $w_L = (1 - \zeta^O) w_L$, where $0 < \zeta^O < 1$
Main Decisions

- Separation with middle-product trade (Configuration S):
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
 - Presence of double holdup problem

- Vertical Integration (Configuration I):
 - U makes a take-it-or-leave-it offer to D, which determines the payment S^I for acquiring the right of operating D
 - Presence of double holdup problem
Main Decisions

- Separation with middle-product trade (Configuration S):
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
 - Presence of double holdup problem

- Vertical Integration (Configuration I):
 - U makes a take-it-or-leave-it offer to D, which determines the payment S^I for acquiring the right of operating D
 - Presence of double holdup problem

- Global outsourcing (Configuration O):
Main Decisions

- **Separation with middle-product trade (Configuration S):**
 - \(U \) makes a take-it-or-leave-it offer to \(D \), which pins down the price and quantity of the middle product, \(q \) and \(M \)
 - Presence of double holdup problem

- **Vertical Integration (Configuration I):**
 - \(U \) makes a take-it-or-leave-it offer to \(D \), which determines the payment \(S^I \) for acquiring the right of operating \(D \)
 - Presence of double holdup problem

- **Global outsourcing (Configuration O):**
 - \(U \) pays \(S^O \) to acquire the right of operating \(D \) and then outsources the manufacturing component of final consumable good production to a subcontractor \(C \) in a LDC
Main Decisions

- Separation with middle-product trade (Configuration S):
 - U makes a take-it-or-leave-it offer to D, which pins down
 the price and quantity of the middle product, q and M
 - Presence of double holdup problem

- Vertical Integration (Configuration I):
 - U makes a take-it-or-leave-it offer to D, which determines
 the payment S^I for acquiring the right of operating D
 - Presence of double holdup problem

- Global outsourcing (Configuration O):
 - U pays S^O to acquire the right of operating D and then
 outsources the manufacturing component of final
 consumable good production to a subcontractor C in a LDC
 - U makes a take-it-or-leave-it offer to C with a mixed
 contract $c_0 + c_1 P^O X^O$
Main Decisions

- **Separation with middle-product trade (Configuration S):**
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
 - Presence of double holdup problem

- **Vertical Integration (Configuration I):**
 - U makes a take-it-or-leave-it offer to D, which determines the payment S^I for acquiring the right of operating D
 - Presence of double holdup problem

- **Global outsourcing (Configuration O):**
 - U pays S^O to acquire the right of operating D and then outsources the manufacturing component of final consumable good production to a subcontractor C in a LDC
 - U makes a take-it-or-leave-it offer to C with a mixed contract $c_0 + c_1 P^O X^O$
 - No holdup problem

- Presence of double holdup problem
Main Decisions

- **Separation with middle-product trade (Configuration S):**
 - U makes a take-it-or-leave-it offer to D, which pins down the price and quantity of the middle product, q and M
 - Presence of double holdup problem

- **Vertical Integration (Configuration I):**
 - U makes a take-it-or-leave-it offer to D, which determines the payment S^I for acquiring the right of operating D
 - Presence of double holdup problem

- **Global outsourcing (Configuration O):**
 - U pays S^O to acquire the right of operating D and then outsources the manufacturing component of final consumable good production to a subcontractor C in a LDC
 - U makes a take-it-or-leave-it offer to C with a mixed contract $c_0 + c_1 P^O X^O$
 - No holdup problem
 - C hires Southern unskilled workers at a cheaper wage, $w_L^* = (1 - \zeta^O) w_L$, where $0 < \zeta^O < 1$
Profit Functions

- $\omega = \frac{w_L}{w_H} = w_L^*(1 - \zeta^i) < 1$, $\kappa^U = 1 / (\gamma A_0^U)^2$, $\kappa^D = 1 / (A_0^D)^2$
- $a^i = \frac{1}{1 - \sigma^i} \kappa^U + \kappa^D$, $b^i = \frac{1}{\gamma} \left[\frac{1}{\theta} + (1 - \zeta^i) \omega \right]$

\[
\begin{align*}
\Pi^U &= q \frac{X}{\gamma} - \left(a^S - \kappa^D \right) X^2 + b^S X + F^U \\
\Pi^D &= PX - \left\{ \kappa^D X^2 + \frac{1}{\gamma} \left[q + (1 - \zeta^S) \omega \right] X + F^D \right\} \\
\Pi^I &= PX - \left\{ a^I X^2 + \left[b^I + \frac{\omega}{\gamma(1 - \nu)} \right] X + F^U + F^D \right\} \\
\Pi^O_l &= -c_0 - \left[a^O X^2 + b^O X + F^U \right] \\
\Pi^C_l &= c_0 - \left(\frac{(1 - \zeta^O)\omega}{\gamma} X + F^D \right) \\
\Pi^O_h &= (1 - c_1) PX + \Pi^O_l \\
\Pi^C_h &= c_1 PX + \Pi^C_l
\end{align*}
\]
World demand for the consumable:

\[P = \left(\frac{X}{D_0} \right)^{-\frac{1}{\epsilon}} \]

where \(D_0 > 0 \) and \(\epsilon > 1 \)
We solve the optimization problem backward.
We solve the optimization problem backward

3rd stage: assuming that the upstream and downstream firms merge and to outsourcing final assembling, the optimal terms of contract $V(c_0, c_1)$ at a contracted output quantity X is determined
We solve the optimization problem backward

3rd stage: assuming that the upstream and downstream firms merge and to outsourcing final assembling, the optimal terms of contract $V(c_0, c_1)$ at a contracted output quantity X is determined

2nd stage: given the optimal contract solved in the third stage, a merged firm chooses whether
Optimization

- We solve the optimization problem backward
- 3rd stage: assuming that the upstream and downstream firms merge and to outsourcing final assembling, the optimal terms of contract $V(c_0, c_1)$ at a contracted output quantity X is determined
- 2nd stage: given the optimal contract solved in the third stage, a merged firm chooses whether
 - to manufacture both upstream and downstream products,
 - or,
We solve the optimization problem backward

3rd stage: assuming that the upstream and downstream firms merge and to outsourcing final assembling, the optimal terms of contract $V(c_0, c_1)$ at a contracted output quantity X is determined

2nd stage: given the optimal contract solved in the third stage, a merged firm chooses whether

- to manufacture both upstream and downstream products,
- or,
- to outsource the downstream product to an outside subcontractor
Optimization

- We solve the optimization problem backward
- 3rd stage: assuming that the upstream and downstream firms merge and to outsourcing final assembling, the optimal terms of contract $V(c_0, c_1)$ at a contracted output quantity X is determined
- 2nd stage: given the optimal contract solved in the third stage, a merged firm chooses whether
 - to manufacture both upstream and downstream products, or,
 - to outsource the downstream product to an outside subcontractor
- 1st stage: given the organizational outcome determined in stage 2, the upstream and downstream firms determine whether to merge
Stage 3: optimal outsourcing contract

- Subcontractor’s outside option $= \Pi_C^0 > 0$ and risk-neutral expected utility:

$$U^C = (1-\delta)\Pi_C^h + \delta\Pi_C^l$$
Stage 3: optimal outsourcing contract

- Subcontractor’s outside option $= \Pi_0^C > 0$ and risk-neutral expected utility:

$$U^C = (1-\delta)\Pi_h^C + \delta\Pi_l^C$$

- (IR) C accepts O’s contract if $U^C - \Pi_0^C \geq 0$, or,

$$c_0 \geq \frac{(1 - \zeta^O)\omega}{\gamma}X - (1 - \delta)c_1PX + (F^D + \Pi_0^C)$$
Stage 3: optimal outsourcing contract

- Subcontractor’s outside option = $\Pi_C^0 > 0$ and risk-neutral expected utility:

$$U^C = (1-\delta)\Pi_h^C + \delta\Pi_l^C$$

- (IR) C accepts O’s contract if $U^C - \Pi_C^0 \geq 0$, or,

$$c_0 \geq \frac{(1 - \zeta^O)\omega}{\gamma} X - (1 - \delta)c_1PX + (FD + \Pi_C^0)$$

- Outsourcer’s optimization problem:

$$\max_{\{c_0, c_1, X\}} U^O = (1 - \delta) \left(1 - e^{-\alpha\Pi_h^O}\right) + \delta \left(1 - e^{-\alpha\Pi_l^O}\right)$$

s.t. Final good demand and C’s IR
Stage 3: optimal outsourcing contract

\[\frac{\partial U^O}{\partial c_1} > 0 \Rightarrow c_1 = 1 \]
Stage 3: optimal outsourcing contract

- $\frac{\partial U^O}{\partial c_1} > 0 \Rightarrow c_1 = 1$
- Since at optimum $\Pi^O_h = \Pi^O_l = \Pi^O$, we obtain a downward-sloping fixed point mapping: $X^O = R^O(X^O)$
Stage 3: optimal outsourcing contract

- \(\frac{\partial U^O}{\partial c_1} > 0 \Rightarrow c_1 = 1 \)

- Since at optimum \(\Pi^O_h = \Pi^O_l = \Pi^O \), we obtain a downward-sloping fixed point mapping: \(X^O = R^O(X^O) \)

- Because \(U^O \) is monotone increasing, IR must bind, which gives a U-shaped function \(c_0 = C^O(X^O) \) with solution \(X^O < \text{minimand} \)
Stage 3: optimal outsourcing contract

- $\frac{\partial U^O}{\partial c_1} > 0 \Rightarrow c_1 = 1$
- Since at optimum $\Pi^O_h = \Pi^O_l = \Pi^O$, we obtain a downward-sloping fixed point mapping: $X^O = R^O(X^O)$
- Because U^O is monotone increasing, IR must bind, which gives a U-shaped function $c_0 = C^O(X^O)$ with solution $X^O < \text{minimand}$
- Since U makes a take-it-or-leave-it offer to D, acquisition payment: $S^O = \Pi^D$
Stage 2: integration versus outsourcing

- Optimization problem under integration:

\[
\max_X \Pi^I = \left(\frac{X}{D_0} \right)^{-1/\epsilon} X - a^I(X)^2 - \left[b^I + \frac{\omega}{\gamma(1-\nu)} \right] X - \left(F^U + F^D \right)
\]
Stage 2: integration versus outsourcing

- Optimization problem under integration:

 \[
 \max_X \Pi^I = \left(\frac{X}{D_0} \right)^{-1/\epsilon} X - a^I(X)^2 - \left[b^I + \frac{\omega}{\gamma(1-n)} \right] X - \left(F^U + F^D \right)
 \]

- Fixed point mapping: \(X^I = R^I(X^I) \)
Stage 2: integration versus outsourcing

- Optimization problem under integration:

\[\max_X \Pi^I = \left(\frac{X}{D_0} \right)^{-1/\epsilon} X - a^I(X)^2 - \left[b^I + \frac{\omega}{\gamma(1-\nu)} \right] X - \left(F^U + F^D \right) \]

- Fixed point mapping: \(X^I = R^I(X^I) \)

- Acquisition payment: \(S^I = \Pi^D \)
Stage 1: merge Versus separation

- Downstream D’s Optimization problem under separation:

$$\max_X \Pi^D = \left(\frac{X}{D_0} \right)^{-1/\epsilon} X - \left[\kappa^D X^2 + \frac{q + \left(1 - \zeta^S \right) \omega}{\gamma} X + F^D \right]$$

$=>$ downward-sloping demand for $X^S = K(q)$
Stage 1: merge Versus separation

- Downstream D’s Optimization problem under separation:

$$\max_X \Pi^D = \left(\frac{X}{D_0} \right) ^{-1/\epsilon} X - \left[\kappa^D X^2 + \frac{q + \left(1 - \zeta^S \right) \omega}{\gamma} X + F^D \right]$$

=> downward-sloping demand for $X^S = K(q)$

- Upstream U’s optimization (taking $K(q)$ as given):

$$\max_q \Pi^U = \frac{qK(q)}{\gamma} - \left\{ \frac{\kappa^U}{1 - \sigma^S} [K(q)]^2 + b^S K(q) + F^U \right\}$$

=> fixed point mapping for X^S supply and pricing:

$X^S = R^S (X^S)$ and $q = Q(X^S)$
Stage 1: merge Versus separation

- **Downstream** D’s Optimization problem under separation:

$$\max_X \Pi^D = \left(\frac{X}{D_0} \right)^{-1/\epsilon} X - \left[\kappa^D X^2 + \frac{q + (1 - \zeta^S) \omega}{\gamma} X + F^D \right]$$

\Rightarrow downward-sloping demand for $X^S = K(q)$

- **Upstream** U’s optimization (taking $K(q)$ as given):

$$\max_q \Pi^U = \frac{qK(q)}{\gamma} - \left\{ \frac{\kappa^U}{1 - \sigma^S} [K(q)]^2 + b^S K(q) + F^U \right\}$$

\Rightarrow fixed point mapping for X^S supply and pricing:
$X^S = R^S(X^S)$ and $q = Q(X^S)$

- The total surplus accrued from middle-product trade =
$\Pi^U(X^S) + \Pi^D(X^S)$
Equilibrium

1. Equilibrium

2. U and D determines whether to merge
3. Multinational U determines whether to outsource
4. C determines whether to accept U’s contract
5. equilibrium configuration is determined by (noting $\Pi^D(X^S) = S^I = S^O$),

<table>
<thead>
<tr>
<th>Necessary/Sufficient Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>S $\Pi^U(X^S) + \Pi^D(X^S) > \max{\Pi^I(X^I), \Pi^O(X^O)}$</td>
</tr>
<tr>
<td>I $\Pi^I(X^I) > \max{\Pi^U(X^S) + \Pi^D(X^S), \Pi^O(X^O)}$</td>
</tr>
<tr>
<td>O $\Pi^O(X^O) > \max{\Pi^U(X^S) + \Pi^D(X^S), \Pi^I(X^I)}$</td>
</tr>
</tbody>
</table>
Middle Product Market Equilibrium

- Higher CST cost lowers middle product output, raises price
Middle Product Market Equilibrium

- Higher CST cost lowers middle product output, raises price
- Greater labor-cost saving raises middle product output, has ambiguous effect on price
Optimal Outsourcing Contract

Optimal Contract: upfront payment to outsourcer, full revenue share to subcontractor
Optimized Profits
Final Demand and Producer Profits

- Optimized profits:

\[\Pi^O = (1-\delta) \frac{1}{\epsilon} PX + a^O X^2 - \Pi^C_0 - F^U - F^D \]
\[\Pi^I = \frac{1}{\epsilon} PX + a^I X^2 - F^U - F^D \]
\[\Pi^U + \Pi^D = \left(2 - \frac{1}{\epsilon} \right) \frac{1}{\epsilon} PX + \left(a^S + 2\kappa^D \right) X^2 - F^U - F^D \]

- Higher final good demand elasticity lowers producer profits under any configuration.
- Such negative effect is larger under O and I than under S, due to direct insulation and price adjustment effects.
- When a final good has many competing substitutes, the organizational structure is more likely to be S rather than mO and I.
Optimized Profits Compared

- For every $X > 0$, $\Pi^U + \Pi^D > \Pi^I > \Pi^O$, and all are strictly increasing.

- Higher communication/search/trade cost (σ^S),
 - lowers X supply and aggregate surplus accrued middle product trade $\Pi^U + \Pi^D$,
 - grants separation more disadvantageous.

- Higher subcontractor’s outside option (Π^C_0)
 - lowers outsourcing profit Π^O,
 - reduces the benefit of outsourcing.

- Overall, when subcontractor’s default risk and outside option are sufficiently low, the labor diversification loss is moderate and the communication/search/trade cost is sufficiently high
 - O is the most preferred
 - S is the least preferred.
Indifference Boundaries

Partition the projected \(((1 - \delta), \nu)\) space into \(S, I\) and \(O\) with 3 pairwise indifference boundaries:
In response to an increase in σ^S or a decrease in ζ^S

- IS brdy up, OS brdy left, IO brdy unchanged
- S shrinks, I and O expand
Comparative Statics II

- In response to higher Π_0^C, higher σ^O, or lower ζ^O
 - IS brdy unchanged, OS brdy right, IO brdy up
 - *direct effect* in stage 2: O shrinks to $O_1 \cup O_2$, I expands to $I \cup O_3 \cup O_4 \cup O_5$, S unchanged
 - *indirect effect* in stage 1 (O more profitable in stage 2): O shrinks to O_1, S expands to $S \cup O_2$
 - *spillover effect* in stage 1 (I more profitable in stage 2): I shrinks to $I \cup O_4 \cup O_5$, S expands to $S \cup O_2 \cup O_3$

- Increase in pure outsourcing cost can create a spillover effect on the trade-off between S and I
In response to an increase in θ

- IS brdy ambiguous, OS brdy left, IO brdy down
- O always expands, I and S may shrink or expand
Welfare Analysis

- Consider the simplest case with $\Pi^C_0 = 0$: world welfare = upstream/downstream firm payoffs + consumer surplus
- Downward-sloping final good demand \Rightarrow consumer surplus is positively related to output
- Case shown above: O leads to both higher firm payoffs and higher output (thus higher consumer surplus) \Rightarrow O arises in equilibrium and achieves highest welfare
- In general, equilibrium configuration need not be optimal
- Example:
 - σ is sufficiently high to cause a downward shift in Π^O so that I emerges in equilibrium
 - ζ is sufficiently high to offset the σ-effect to leave R^O unchanged
 - equilibrium output of middle and final products are still the highest under O
 - O generates less firm payoffs than I, but yields higher consumer surplus
Calibration

- Key observations:
 - total trade cost in unit values = 10-30%
 - labor saving in the South = 10-30%
 - price elasticities of demands for manufactured goods $\in [1, 3]$
 - integration cost = 12% (D'Aveni-Ravenscraft 1994)
 - defect rate = 5%
 - non-production/production wage differential = 1.6 (Machin-van Reenen 1998)
 - ratio of designing labor in the North to the South = 5
 - ratio of total workers in the North to the South = 12.5
 - non-production employment share = 30% (Machin-van Reenen 1998)
 - percentage of high-skilled workers = 48% (Sachs-Shatz 1996)
 - value of intermediate goods exported to the South = 45 (Yi 2003)

- Normalization: $X^D = L^U = 1$
Calibrated Parameter Values

<table>
<thead>
<tr>
<th></th>
<th>(\sigma^S = 0.2, \zeta^S = 0.25, \sigma^O = 0.1, \zeta^O = \frac{1}{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\Pi^C_0 = 5, \delta = 0.05, \nu = 0.12)</td>
</tr>
<tr>
<td></td>
<td>(A^U_0 = 35.819, A^D_0 = 2.944, \theta = 70.298, \gamma = 0.0411)</td>
</tr>
<tr>
<td></td>
<td>(F^U = 20, F^D = 10, \omega = 0.625, D_0 = 12767, \epsilon = 2)</td>
</tr>
<tr>
<td>U.S.</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>(\zeta^S = 0.25 \cdot 0.75, \zeta^O = \frac{1}{3} \cdot 0.75, \nu = 0.12 \cdot \frac{2}{3})</td>
</tr>
<tr>
<td></td>
<td>others identical to the U.S.</td>
</tr>
<tr>
<td>Taiwan</td>
<td>(\zeta^S = 0.25 \cdot \frac{2}{3}, \zeta^O = \frac{1}{3} \cdot \frac{2}{3}, \nu = 0.12 \cdot 3)</td>
</tr>
<tr>
<td></td>
<td>(\Pi^C_0 = 5 \cdot 1.2, \delta = 0.05 \cdot 2.5, \theta = 70.298 \cdot 0.75)</td>
</tr>
<tr>
<td></td>
<td>others identical to the U.S.</td>
</tr>
<tr>
<td>Korea</td>
<td>(\nu = 0.12), others identical to Taiwan</td>
</tr>
</tbody>
</table>

\(\sigma \): Standard deviation, \(\zeta \): Correlation coefficient, \(\Pi \): Marginal utility, \(\Pi^C \): Marginal cost of capital, \(A \): Asset value, \(\theta \): Technology coefficient, \(\gamma \): Impact parameter, \(F \): Flow, \(D \): Depreciation, \(\epsilon \): Elasticity of demand, \(\nu \): Wage rate.
Calibrated Equilibria
Conclusions

Main Findings:

outsourcing is the most and separation the least preferred if subcontractor's defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high. The potential availability of one organizational structure can change the trade-off of the other structures (presence of spillover effect in response to changes in pure outsourcing costs). Equilibrium need not be optimal. Extensions: generalize production technologies/organizational costs, quantitative welfare assessments.
Conclusions

Main Findings:

- outsourcing is the most and separation the least preferred if subcontractor’s defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high.

- Extensions:

 - generalize production technologies/organizational costs
 - quantitative welfare assessments
Conclusions

Main Findings:

- outsourcing is the most and separation the least preferred if subcontractor’s defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high
- potential availability of one organizational structure can change the trade-off of the other structures (presence of spillover effect in response to changes in pure outsourcing costs)
Conclusions

Main Findings:

- Outsourcing is the most and separation the least preferred if subcontractor’s defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high.
- Potential availability of one organizational structure can change the trade-off of the other structures (presence of spillover effect in response to changes in pure outsourcing costs).
- Equilibrium need not be optimal.
Conclusions

- **Main Findings:**
 - Outsourcing is the most and separation the least preferred if subcontractor’s defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high.
 - Potential availability of one organizational structure can change the trade-off of the other structures (presence of spillover effect in response to changes in pure outsourcing costs).
 - Equilibrium need not be optimal.
 - Explain why the U.S. outsources more than Japan while Korea is more integrated than Taiwan.

- **Extensions:**
 - Generalize production technologies/organizational costs.
 - Quantitative welfare assessments.
Conclusions

Main Findings:

- outsourcing is the most and separation the least preferred if subcontractor’s defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high
- potential availability of one organizational structure can change the trade-off of the other structures (presence of spillover effect in response to changes in pure outsourcing costs)
- equilibrium need not be optimal
- explain why the U.S. outsources more than Japan while Korea is more integrated than Taiwan

Extensions:
Main Findings:

- outsourcing is the most and separation the least preferred if subcontractor’s defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high.
- potential availability of one organizational structure can change the trade-off of the other structures (presence of spillover effect in response to changes in pure outsourcing costs).
- equilibrium need not be optimal.
- explain why the U.S. outsources more than Japan while Korea is more integrated than Taiwan.

Extensions:

- generalize production technologies/organizational costs.
Conclusions

Main Findings:

- Outsourcing is the most and separation the least preferred if subcontractor’s defect and bargaining strength are low, labor diversification loss is moderate, and CST cost is high.
- Potential availability of one organizational structure can change the trade-off of the other structures (presence of spillover effect in response to changes in pure outsourcing costs).
- Equilibrium need not be optimal.
- Explain why the U.S. outsources more than Japan while Korea is more integrated than Taiwan.

Extensions:

- Generalize production technologies/organizational costs.
- Quantitative welfare assessments.