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What is reliability?

• Reliability is quality over time.

• A formal definition of reliability is given as:
Reliability is the probability that a product will operate or a service will be 
provided properly for a specified period of time (design life) under the design 
operating conditions (such as temperature, load, volt…) without failure.

• Let 𝑇 be a random variable that denotes the product operating time before 
failure. Then, the reliability of a product is defined as

𝑅 𝑡 = 1 − 𝐹𝑇 𝑡 = 𝑃(𝑇 ≥ 𝑡)
where 𝐹𝑇(𝑡) is the cumulative distribution function of 𝑇.
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Why reliability is important?

• Customers expect purchased products to be reliable and safe.

• Predicting product warranty costs.

• Comparing components from two or more different manufacturers, 
materials, and so on.

3
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How to assess reliability

• In most cases, this will involve the collection of reliability data from studies 
such as laboratory tests (or designed experiments) of products, tests on early 
prototype units, careful monitoring of early-production units in the field, 
analysis of warranty data, and systematic longer-term tracking of products in 
the field.
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Collection of reliability data

5

Experiments

Life tests Degradation tests

Accelerated life tests Accelerated degradation tests
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Life tests

6
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Accelerated life tests
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Degradation tests
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Degradation tests

9

Time

Quality

Characteristic
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𝑡2 𝑍1(𝑡2) 𝑍2(𝑡2) 𝑍𝑛(𝑡2)
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Degradation tests

• General path models
𝑍 𝑡 = 𝐺 𝑡 + 𝜖𝑡

where 𝐺(𝑡) is a deterministic trend and 𝜖𝑡 is independently distributed.

• Stochastic processes (Lévy process)
𝑍(𝑡) has the following properties:

• 𝑍 𝑡 has continuous path and 𝑍 0 = 0.

• 𝑍 𝑡 has independent increment. 

That is, 𝑍 𝑡𝑖 − 𝑍 𝑡𝑖−1 is independent with 𝑍 𝑡𝑗 − 𝑍 𝑡𝑗−1 for 𝑡𝑗 < 𝑡𝑖−1.

• 𝑍 𝑡 − 𝑍 𝑠 is equal in distribution to 𝑍𝑡−𝑠 for any 𝑠 < 𝑡.
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Accelerated degradation tests (ADT)

• Use the degradation data under higher stress levels to extrapolate the product’s lifetime 
distribution under normal use condition.

11
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How to predict product lifetime based on 
ADTs data?

• 𝑍 𝑡 𝑆0 : Degradation path under normal use condition

• Normal use condition:

• Threshold:

•

•

• The q quantile of product lifetime:
Mean time to failure (MTTF) : 𝐸(𝑇)

12
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Exponential dispersion degradation model

•

•

•

1

( ) ~ ( , )

( ) ( ) has the probability density function:j j j

Z t ED t

Z Z t Z t

 

  

( ( )) ,  Var( ( )) ( ) /E Z t t Z t V t   

( ) , ( ,0] [1, )dV d    

d d=0 d=1 1<d<2 d=2 d=3

distribution Wiener Poisson Compound 

Poisson

Gamma Inverse 

Gaussian

{ ( ) [ ( )]}
( | , ) ( | , ) j jz t

j j jf z c z t e
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Collection of reliability data

14

Experiments

Life tests Degradation tests

Accelerated life tests Accelerated degradation tests

Optimal designs
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Analysis procedure for laboratory data

15

Planning a design

Collect data

Statistical Inferences

Reliability of products

e.g. መ𝜉𝑞
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Analysis procedure for laboratory data

16

Planning a design

Collect data

Statistical Inferences

Reliability of products

e.g. መ𝜉𝑞

prior knowledge

Find an optimal design

such that we can obtain መ𝜉𝑞
with minimum variance
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Optimal criteria

• D-optimality: minimize the determinant of the covariance matrix of 
parameters.

• A-optimality: minimize the trace of the covariance matrix of parameters.

• E-optimality: minimize the maximum eigenvalue of the covariance matrix of 
parameters.

• V-optimality: minimize the variance of መ𝜉𝑞.

17
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Layout of a k-level ADT

18
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Goal of designing an ADT plan

• The goal of this study is to find an optimal design which minimizes the 
asymptotic variance of That is,

• I will use the exponential dispersion accelerated degradation model to 
illustrate the procedure.

* = argmin AVar( | ).q


  

 (MLE).q

19
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 Optimal design for EDADTs of a single 
accelerating variable

• Problem formulation

• The expression of Avar

• Conjecture V-optimal design

• Optimal allocation rule based on cost constraint

20

( መ𝜉𝑞)
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Problem formulation

21
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Problem formulation

•

•

( 1)

ln( ( )) , 0, [( | ) ~ ( ( ) , ),   

( | ) ( | ) has the probability densit

,1]

y function:

i jl l l jl

ijl i jl l i j l l

l l l LZ t x ED x t

Z Z

x a bx b x

x Z t
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Let ( | ) ( 1,..., , 1,... , =1,..., ) denote the degradation of th

test unit at time  under th stress-level .
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Maximum likelihood estimation

• The likelihood function

𝐿 𝑎, 𝑏, 𝜆 =ෑ

𝑙=1

𝑘

ෑ

𝑖=1

𝑛𝑙

ෑ

𝑗=1

𝑚𝑙

𝑓(Δ𝑧𝑖𝑗𝑙|𝜇 𝑥𝑙 , 𝜆) .

• The log-likelihood function

𝑙 𝑎, 𝑏, 𝜆 = 𝐶 +

𝑙=1

𝑘



𝑖=1

𝑛𝑖



𝑗=1

𝑚𝑙

𝜆𝜛 𝜇 𝑥𝑙 Δz𝑖𝑗𝑙 − 𝜆

𝑙=1

𝑘

𝜅 𝜛 𝜇 𝑥𝑙 𝑛𝑙𝑚𝑙Δ𝑡 .

• Maximum likelihood estimation

ො𝑎, 𝑏, መ𝜆 = argmax 𝑙 𝑎, 𝑏, 𝜆 .
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Properties of MLE

• Fisher information matrix

𝐼∗ 𝜃|𝜁 = 𝐸 −
𝜕2𝑙 𝜃

𝜕𝜃𝑖𝜕𝜃𝑗
=

𝜆Δ𝑡𝑒−𝑎 𝑑−2 𝐼(𝜃|𝜁) 0𝑇

0
1

2𝜆2


𝑙=1

𝑘

𝑛𝑙𝑚𝑙

where 𝐼 𝜃 𝜁 = σ𝑙=1
𝑘 𝑛𝑙𝑚𝑙𝐴 𝑥𝑙

1 𝑥𝑙
𝑥𝑙 𝑥𝑙

2 , 𝐴 𝑥𝑙 = 𝑒−𝑏 𝑑−2 𝑥𝑙.

• Asymptotic covariance matrix

𝐶𝑜𝑣 መ𝜃 = 𝐼∗ 𝜃|𝜁
−1
.
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Properties of MLE

• Invariant property
If 𝑔 𝜃 is a function of 𝜃, then the MLE of 𝑔(𝜃) is 𝑔( መ𝜃).

• 𝛿-method
The asymptotic variance of 𝑔( መ𝜃) is

𝐴𝑉𝑎𝑟 𝑔 መ𝜃 = 𝛻𝑔 𝜃 𝐶𝑜𝑣 መ𝜃 𝛻𝑔 𝜃 𝑇 ,

where 𝛻𝑔 𝜃 =
𝜕𝑔 𝜃

𝜕𝑎
,
𝜕𝑔 𝜃

𝜕𝑏
,
𝜕𝑔 𝜃

𝜕𝜆
.
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The expression of Avar

• Asymptotic variance

𝐴𝑉𝑎𝑟 መ𝜉𝑞 𝜁

=
1

𝑓𝑇 𝜉𝑞
2
Δ𝑡

ℎ1,𝑞
2 𝑒𝑎(𝑑−2)σ𝑙=1

𝑘 𝐴 𝑥𝑙 𝑥𝑙
2𝑚𝑙𝑛𝑙

𝜆σ𝑢<𝑣
𝑘 𝐴 𝑥𝑢 + 𝑥𝑣 𝑥𝑣 − 𝑥𝑢

2𝑚𝑢𝑛𝑢𝑚𝑣𝑛𝑣
+
2𝜆2ℎ2,𝑞

2 Δ𝑡

σ𝑙=1
𝑘 𝑚𝑙𝑛𝑙

,

where ℎ1,𝑞 =
𝜕𝐹𝑇(𝜉𝑞|𝜃)

𝜕𝑎
, ℎ2,𝑞 =

𝜕𝐹𝑇(𝜉𝑞|𝜃)

𝜕𝜆
.

• 𝑚𝑙 and 𝑛𝑙 are nonidentifiability, because of the assumptions of independent 
and stationary increment.

26

ˆ( )q



/89

• We use a two-step approach to obtain the optimal design
1. We first derive an optimal approximate design.
2. We involve a cost constraint to calculate 𝑛𝑙 and 𝑚𝑙.

• Let 𝑁0 = σ𝑙=1
𝑘 𝑚𝑙𝑛𝑙 and 𝑝𝑙0 =

𝑛𝑙𝑚𝑙

𝑁0
𝐴𝑉𝑎𝑟 መ𝜉𝑞 𝜁

=
1

𝑓𝑇 𝜉𝑞
2
𝑁0Δ𝑡

ℎ1,𝑞
2 𝑒𝑎(𝑑−2)σ𝑙=1

𝑘 𝐴 𝑥𝑙 𝑥𝑙
2𝑝𝑙0

𝜆 σ𝑢<𝑣
𝑘 𝐴 𝑥𝑢 + 𝑥𝑣 𝑥𝑣 − 𝑥𝑢

2𝑝𝑢0𝑝𝑣0
+ 2𝜆2ℎ2,𝑞

2 Δ𝑡 ,

27

The expression of Avar ˆ( )q
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• Prefix     , minimizing Avar       is equivalent to minimize

𝐺 𝜁 =
σ𝑙=1
𝑘 𝐴 𝑥𝑙 𝑥𝑙

2𝑝𝑙0
σ𝑢<𝑣
𝑘 𝐴 𝑥𝑣 + 𝑥𝑢 𝑥𝑣 − 𝑥𝑢

2𝑝𝑢0𝑝𝑣0
,

𝜁 =
𝑥1 ⋯ 𝑥𝑘
𝑝10 ⋯ 𝑝𝑘0

• V-optimal approximate design
𝜁∗ = argmin𝜁 𝐺(𝜁)

28

Optimal approximate design

0N ˆ( )q
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Introduction of general equivalence theorem

1 1

1 2

1 2 2 2 1 2

1 2

,  if 

, 1 ( ) ,  if , 1

0,  o.w.

p x x
x x

p p x p x x p p
p p
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𝑃
𝜁

𝜁
𝜁

𝜁

𝜁

𝜁

𝜙(𝜁): objective function

ℝ
𝜙(𝜁∗)

𝜁∗ is 𝜙-optimal iff the directional 

derivative of 𝜙 at 𝜁∗ is zero.
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Introduction of general equivalence theorem

1 1

1 2

1 2 2 2 1 2

1 2

,  if 

, 1 ( ) ,  if , 1

0,  o.w.

p x x
x x

p p x p x x p p
p p
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1 2

2 1

Let  be the probability measure containing in the set of all probability measure, ,

on the design region . Let  be the function in  and , . Then, the derivative

twoard  at a given point  

P

D P P



  

 



is defined by

1 2 1
1 2

0

((1 ) ) ( )
( , ) lim .
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Introduction of general equivalence theorem

• Let 𝜁𝑥(𝑧) = ቊ
1 if 𝑧 = 𝑥
0 𝑜. 𝑤.

be a probability measure with probability 1 at x.

Then, {𝜁𝑥|𝑥 ∈ [𝑥𝐿, 1]} is a basis of 𝑃. That is, for any 𝜂 ∈ 𝑃, 𝜂 = ∫ 𝜁𝑥 𝜂(𝑑𝑥).

• For example, if 𝜂(𝑧) = ቊ
𝑝1 if 𝑧 = 𝑥1
𝑝2 if 𝑧 = 𝑥2

, then 

𝜂 = 𝜁𝑥1𝜂 𝑥1 + 𝜁𝑥2𝜂 𝑥2 = 𝜁𝑥1𝑝1 + 𝜁𝑥2𝑝2.

31

𝜁∗ is the optimal design iff sup
𝜂∈𝑃

Λ 𝜁∗, 𝜂 = 0
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Introduction of general equivalence theorem

• If Λ 𝜁, 𝜂 = Λ 𝜁, 𝜁𝑥1𝑝1 + 𝜁𝑥2𝑝2 = Λ 𝜁, 𝜁𝑥1 𝑝1 + Λ 𝜁, 𝜁𝑥2 𝑝2, then we say 

Λ 𝜁, 𝜂 is linear in 𝜂.

• If Λ 𝜁, 𝜂 is linear in 𝜂, then
sup
𝜂∈𝑃

Λ 𝜁∗, 𝜂 = 0 iff sup
𝑥∈[𝑥𝐿,1]

Λ 𝜁∗, 𝜁𝑥 = 0.

32

𝜁∗ is the optimal design iff sup
𝜂∈𝑃

Λ 𝜁∗, 𝜂 = 0
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Introduction of general equivalence theorem

33

Under some regular conditions, Whittle (1973), Chaloner & Larntz (1989) stated 

that if 𝜙 is a concave function, then

𝜁∗ is the optimal design iff sup
𝑥∈[𝑥𝐿,1]

Λ 𝜁∗, 𝑥 = 0,

where Λ 𝜁∗, 𝑥 = Λ(𝜁∗, 𝜁𝑥)
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Conjecture V-optimal design

34

1. 𝑑 < 2, 𝜁Δ =
max 𝑥𝐿, 𝜌1 1

𝑝10
Δ 𝑝20

Δ

2. 𝑑 = 2, 𝜁Δ =
𝑥𝐿 1

𝑝10
Δ 𝑝20

Δ

3. 𝑑 > 2, 𝜁Δ =
𝑥𝐿 min(1, 𝜌2)

𝑝10
Δ 𝑝20

Δ

where 𝜌1 = 1 + 1 +𝑊 𝑒−1
2

𝑏(𝑑−2)
, 𝜌2 = 𝑥𝐿 + 1 +𝑊 𝑒−1

2

𝑏(𝑑−2)
, and 𝑝10

Δ =
𝑥2
Δ𝐴(𝑥2

Δ/2)

𝑥1
Δ𝐴(𝑥1

Δ/2)+𝑥2
Δ𝐴(𝑥2

Δ/2)
, 𝑝20

Δ = 1 − 𝑝10
Δ .
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Conjecture V-optimal design

35

Theorem

sup ( , ) 0,  and hence  is the global V-optimal design.x x   

Tung, H. P., Lee, I. C., & Tseng, S. T. (2022). Analytical approach for designing accelerated degradation tests 

under an exponential dispersion model. Journal of Statistical Planning and Inference, 218, 73-84.
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Optimal allocation rule based on cost 
constraint

• Asymptotic variance

𝐴𝑉𝑎𝑟 መ𝜉𝑞 𝜁

=
1

𝑓𝑇 𝜉𝑞
2
Δ𝑡

ℎ1,𝑞
2 𝑒𝑎(𝑑−2)σ𝑙=1

𝑘 𝐴 𝑥𝑙 𝑥𝑙
2𝑚𝑙𝑛𝑙

𝜆σ𝑢<𝑣
𝑘 𝐴 𝑥𝑢 + 𝑥𝑣 𝑥𝑣 − 𝑥𝑢

2𝑚𝑢𝑛𝑢𝑚𝑣𝑛𝑣
+
2𝜆2ℎ2,𝑞

2 Δ𝑡

σ𝑙=1
𝑘 𝑚𝑙𝑛𝑙

,

where ℎ1,𝑞 =
𝜕𝐹𝑇(𝜉𝑞|𝜃)

𝜕𝑎
, ℎ2,𝑞 =

𝜕𝐹𝑇(𝜉𝑞|𝜃)

𝜕𝜆
.

• 𝑚𝑙 and 𝑛𝑙 are nonidentifiability, because of the assumptions of independent 
and stationary increment.

36
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Optimal allocation rule based on cost 
constraint

37

• Cost Constraint

•
1 2 1 2

1 1 1 0 2 2 2 0

Minimize   ( , , , )  

subjected to  and 

C m m n n

m n p N m n p N  
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Optimal allocation rule based on cost 
constraint

38
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Optimal allocation rule based on cost 
constraint

39
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An illustrative example

• Stress relaxation data (Yang, 2007)

• Stress levels: 65℃, 85℃, 100℃

• Normal use condition: 40℃

• (𝑑, 𝑎, 𝑏, λ) = (1.4, 1.95, 1.83, 2.20)

• Standardized design region [0.46,1]

40

Quality

Characteristic
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An illustrative example

• Based on the V-optimal design Theorem, we have

41

1 2

10 20

0.46 1

0.745 0.255

x x

p p


 



 

   
    

  



/89

An illustrative example

• Assuming 𝑁0 = 1000, 𝑐𝑜𝑝 = 1.9, 𝑐𝑖𝑡 = 53, Δ𝑡 = 4

42

1 2

1 2

1 2

0.46 1

10.34 6.05

72.09 42.16

x x

n n

m m
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An illustrative example

43
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 Optimal design for EDADTs of two 
accelerating variables without interaction

• Problem formulation

• Degenerate design

• Non-degenerate design

• An illustrate example

44
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Problem formulation

45

1 1

1

( , ) ( , )k k

k

x y x y

p p


 
  
 

Measurements frequency

Number of measurements

Proportion of sample size allocation

Stress levels

Standardized stress levels

Total sample size: N

Number of stress levels: k

11 12

1 1

( , )

( , )

S S

x y
  

1p 2p kp

m m m

f f f

  

  

  

21 22

2 2

( , )

( , )

S S

x y

1 2( , )

( , )

k k

k k

S S

x y
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Problem formulation

•

• 0 1 2 1 2

( 1)

2( | ) ~ ( ( , ) , ),  

( | ) ( | ) has the proba

ln( ( , )) , , >0, (

bility density function:

, )l l l l l li j l l l j

ijl i j l i j l

x y x y xZ t x ED x y t

Z Z t x Z t x

y D      



   

  

46

Let ( | ) ( 1,..., , 1,... , =1,..., ) denote the degradation of th

test unit at time  under th stress-level ( , ).

i j l i

j l l

Z t x i n j m l k i

t j t l x y

 

 

{ ( ( , )) [ ( ( , ))]}
( | ( , ), ) ( | , ) l l ijl l lx y z t x y

ijl l l ijlf z x y c z t e
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Problem formulation

47

2  can beD
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Escobar and Meeker (1995)

0 1 2Parameters : =( , , , )   θ

1

1

(0,0)

1 1 2 2

1 2

11 11 1 1 21 21 2 2

11 1 21 2

( , ) ( , ) ( , ) ( , )r r r r

r r

x y x y x y x y

p p p p
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Escobar and Meeker (1995)
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Escobar and Meeker (1995)
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Escobar and Meeker (1995)
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Irregular design region
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Equivalence relation

• Binary relation: Given sets X and Y, a binary relation R over sets X and Y is a 
subset of 𝑋 × 𝑌.

• If 𝑥, 𝑦 ∈ 𝑅, then we say x is related to y and is denoted by xRy or x~y.

• Equivalence relation: A binary relation ~ over sets X and X and satisfies the 
following properties: for 𝑎, 𝑏, 𝑐 ∈ 𝑋,

• 𝑎~𝑎 (reflexivity)

• If 𝑎~𝑏 then 𝑏~𝑎 (symmetry)

• If 𝑎~𝑏 and 𝑏~𝑐 then 𝑎~𝑐 (transitivity)

53
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Equivalence relation

• Equivalence class: 𝑎 = 𝑥 ∈ 𝑋 𝑥~𝑎}

• Quotient set: Τ𝑋 ~ = 𝑥 𝑥 ∈ 𝑋}

54

𝑋

[𝑐]

[𝑏]

[𝑎]

Τ𝑋 ~ = { 𝑎 , 𝑏 , [𝑐]}
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Non-degenerate design → Degenerate design
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Find degenerate designs

2 1 2 2 1 2 1 2 1 2

1 2 1 2 1

Let ~  be a relation on  and for , , ~  if  where ( , ) .

~  is an equivalence relation.

The equivalence class of an element  in ,  denoted by [ ] is the set { | ~ }.
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D D
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Degenerate design

•

•

57

1Let  be the degenerate design on [ ,1] with stress levels .d

kl u u  

ˆTo minimize AVar( | ) is equivalent to minimize ( ).d d d

q G  
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Degenerate design → Non-degenerate design
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Non-degenerate design

• Asymptotic variance

•

59

ˆTo minimize AVar( | ) is equivalent to minimize ( )o o o

q G  
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Degenerate and non-degenerate design
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Theorem 1
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Theorem 1
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Theorem 2
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Theorem 3
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information matrix among all V-optimal design.
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An illustrative example

•

•

•

•

65
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An illustrative example

•

•

•

•

•
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An illustrative example

68

1[ ]v

2[ ]vFrom Theorem 1, 2 and 3
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 Optimal design for EDADTs of two 
accelerating variables with interaction

• Problem formulation

• The expression of Avar

• The Conjecture design under d = 2

• The Conjecture design under d < 2

• The Conjecture design under d > 2

• LED example and numerical validation

69
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Problem formulation

70
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Problem formulation

•

•

(

0 1 2 3
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Let ( | ) ( 1,..., , 1,... , =1,..., ) denote the degradation of th

test unit at time  under th stress-level ( , ).
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The expression of Avar

• Asymptotic variance

•

72

ˆ( )q

ˆTo minimize AVar( | ) is equivalent to minimize ψ( ).q  
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The expression of Avar ˆ( )q
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• Step 1 : Guess optimal design:

• Step 2 : Use General Equivalence Theorem to verify

Accelerating 

variable 2

Accelerating 

variable 1

1𝑙𝑦

𝑙𝑥

1

The Conjecture design under d = 2
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• The conjecture design is

The Conjecture design under d = 2
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• Step 2:

The Conjecture design under d = 2

Set = - 

76

1𝑙𝑥

𝑙𝑦

1

1

1.

2.
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Theorem

The Conjecture design under d = 2

 is V-optimal design. 

77



/89

An illustrative example

• LED data (Tseng and Peng, 2007)

• Temperature: 45℃, 85℃ 

• Voltage: 10V, 30V

• Normal use condition: (20℃,7.5V)

• 𝑙𝑥 = 0.433, 𝑙𝑦 = 0.208

78

*
(0.433,0.208) (1,0.208) (0.433,1) (1,1)

0.578 0.250 0.120 0.052


 
  
 



/89

An illustrative example

79



/89

The Conjecture design under d < 2

80

Accelerating 

variable 2

Accelerating 
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1𝑙𝑥
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The Conjecture design under d > 2
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Numerical validation
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Numerical validation

83

Case 1:
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Numerical validation
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Case 2:
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Numerical validation
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Case 3:
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Numerical validation
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Case 4:
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Numerical validation

• Hong and Ye (2017) mentioned the necessity of acceleration.

• Coefficient of variation of EDADT

87
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Conclusion

• We provide a comprehensive study to the V-optimal ADT design problem 
when the underlying model follows an ED degradation model.

• We analytically prove the optimal design for EDADT with single accelerating 
variable.

• We analytically prove the optimal design for EDADT of two accelerating 
variables without interaction. Furthermore, the design region can be irregular.

• We analytically prove the optimal design for EDADT of two accelerating 
variables with interaction when d = 2. For d ≠ 2, we proposed the conjecture 
designs and verify that the conjecture designs turn out to be the V -optimal 
design by the GET numerically.
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Thank you for listening
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