Stable Matching: Why Interesting, Important and Fun?

Kazuo Iwama (NTHU)

- S. Gupta, M. Halldorsson, K. Hamada,
- R. Irving, D. Manlove, S. Miyazaki,
- Y. Morita, H. Yanagisawa

Objective of This Talk

- What is the stable matching problem?
- Why is it interesting, important and fun?
- Using several (relatively old) results
- Some new results by our group

Stable Matching: Short History

- 1952: National Resident Matching Program (Assigning medical students to hospitals)
- 1962: D. Gale and L. Shapley. "College admissions and the stability of marriage"
- 1976: Donald E. Knuth, Mariages Stables, Les Presses de L'Universite de Montreal.
- 1989: D. Gusfield and R. W. Irving. The Stable marriage Problem: Structure and Algorithms, MIT
- 1990: A. Roth and M. Sotomayor. Two-Sided Matching: A Study in Game Theoretic Modeling and An IMPORTANT ridge
- 2012: A. Roth and L. Shapley. Nobel Prize in Economics
- 2013: D. Manlove. Algorithmics of Matching under Preferences

Stable Matching/Stable Marriage Original Problem

Bipartite Matching

Bipartite Matching

	а	b	С	d	е
Α	1	5	3	2	4
В	1	4	3	5	2
С	3	4	2	5	1
D	1	2	4	3	5
Е	2	1	3	5	4

	Α	В	С	D	Е
а	1	4	2	3	5
		2	1		_1_

Minimum weight matching

Hungarian Method

d
e
2 3 1 5 4

2 3 1 5 4

MWM: Globally OK, but...

cost=10

cost=8

1: (a) c b

a: (1)3 2

2: (b) a c

b: (2)1 3

3: a b (c)

c: 1 2 (3)

1: <u>a</u> (c) b

a: <u>1</u>(3) 2

2: (b) a c

b: (2) 1 3

3: (a) b c

c: (1)2 3

Stability of Matching

Blocking pair

[Gale, Shapley 62]

Stable Matching

[Gale, Shapley 62]

1: a (c)b d e

a: (2)1 3 4 5

 $2: \quad c \quad (a) \quad e \quad b \quad d$

b: 2 1 (4) 5 <u>3</u>

3: <u>b</u> a (e) d c

c: (1) 2 3 5 4

 $4: \quad c \quad (b) \quad d \quad e \quad a$

d: 3 1 4 2 (5)

5: c(d)b e a

e: 4(3)125

To Remove Blocking Pairs...

No blocking pairs any more

Possible Algorithm for Obtaining a Stable Matching

Let M = any matchingWhile M includes blocking pairsDo select any such a pair and swap

End
Output M

Conjectured in [Knuth 76]

However,...

[Tamura 93]

- - 2: (b) d c a b: 3 1 (2)
 - 3: c a d b c: 4 2 3 1
- \Rightarrow 4: d b <u>a</u> (c)

- d: 1 (3) 4

- 1: a (c) b d
- 2: (b) d c a b: 3 1 (2)
- 3: c <u>a</u> (d) b c: 4 2 <u>3</u>
- 4: d b (a) c

- a: 2 (4) 1

 - d: 1

It Loops

GS Algorithm

[Gale, Shapley 62]

1: (a) c b d e a: 2 (1) (3) 4 5
2: (c) a e b d b: 2 1 (4) 5 (3)
3: (x) (x) (e) d c c: 1 (2) 3 (3) (3)
4: (x) (b) d e a d: 3 1 4 2 (5)
5: (x) (d) b e a e: 4 (3) 1 2 5

Amazing Theorem: GS always finds a stable matching.
: no partner => 4: X X X X X => e: 3 1 4 2 5 (no)

no blocking pair similarly.

An Important Operation for SMs

Is a stable matching unique? No.

```
1: a c b d a: 2 4 1 3
2: b d c a b: 3 1 2 4
3: c a d b c: 4 2 3 1
4: d b a c d: 1 3 4 2

1: a c b d a: 2 4 1 3
2: b d c a b: 3 1 2 4
3: c a d b c: 4 2 3 1
4: d b a c d: 1 3 4 2
```

```
1: a c b d a: 2 4 1 3 1: a c b d a: 2 4 1 3 2: b d c a b: 3 1 2 4 3: c a d b c: 4 2 3 1 3: c a d b a c d: 1 3 4 2 4: d b a c d: 1 3 4 2
```

An Important Operation for SMs

Is a stable matching unique? No.

```
1: a c b d a: 2 4 1 3 1: a c b d a: 2 4 1 3 2: b d c a b: 3 1 2 4 3: c a d b c: 4 2 3 1 3: c a d b c: 4 2 3 1 4: d b a c d: 1 3 4 2 4: d b a c d: 1 3 4 2
```

```
1: a c b d a: 2 4 1 3

2: b d c a b: 3 1 2 4

3: c a d b c: 4 2 3 1

4: d b a c d: 1 3 4 2

1: a c b d a: 2 4 1 3

2: b d c a b: 3 1 2 4

3: c a d b c: 4 2 3 1

4: d b a c d: 1 3 4 2
```

Rotation

Lattice Structure

Obtaining a "Good" Stable Matching

- GS algorithm => Man-opt or Woman-opt
- Egalitarian: minimizing sum of ranks (cost)
- Min-Regret: minimizing max of ranks
- Sex-Equal: minimizing diff of total ranks between men and women (NP-hard)

```
1 2 3 4 1 2 3 4 rank

1: a c b d a: 2 4 1 3

2: b d c a b: 3 1 2 4

3: c a d b c: 4 2 3 1

4: d b a c d: 1 3 4 2
```


Men: If free, propose to the currently best woman (in any order)
Women: Accept the propose if not oversubscribed and reject the worst otherwise

1:	a	c	b	f			a:	2	1			
2:	c	a	f	e	b	d	b:	2	1	4	5	3
3:	b	a					c:	1	2	3		
4:	c	b	d	e	a	f	d:	3	1	4	2	
5:	c	f					e:	4	3	1	2	5
							f:	1	3	2		

Men: Propose to the currently best woman (in any order)

Women: Accept the propose if not oversubscribed and reject the worst otherwis

1: a c b a: 2 1 3 4 5

2: c a b b: 2 1 4 5 3

3: b a c c: 1 2 3 5 4

4: c b a

5: b c a

Men: Propose to the currently best woman (in any order)

Women: Accept the propose if not oversubscribed and reject the worst otherwis

Residents hospital problem

Rural hospital theorem: Stable matchings may not be unique, but # of residents assigned to each hospital is unique.

Stable Roommate Problem

[Gale, Shapley 62, and Knuth 76]

Stable roommates

1: (2) 3 4

I: (**%**)(3) 4

1: 2 3 (4)

2: 3 4 (1)

2: 3 (4)

2: (3) 1 4

3: (4) 1 2

3: 4 (1) 2

3: 1 (2) 4

4: 2 (3) 1

4: (2) 3 1

4: (1) 2 3

Stable roommates

1: (2) 3 4

1: (2)(3) 4

1: 2 (3) 4

2: 3 4 (1)

2: 3 4 1

2: 3 1 (4)

3: (4) 1 2

3: 4 (1) 2

3: (1) 2 4

4: 2 3 1

4: (2) 3 1

4: 1 **(** 2**)** 3

Stable roommates

 1: (2) 3 4
 1: (2) 3 4

 2: 3 4 1
 2: 3 4 1

 3: 4 1 2
 3: 4 1 2

 4: 2 3 1
 4: (2) 3 1

 4: 1 2 3

Still solvable in poly time [Irving 85]

1: 2 5 3 6 1: bec f a: 2 5 3 6

2: 3 4 6 1 2: (c)(d) (f) a b: 3 4 (6)(1)

3: 4 1 5 2 3: dae b c: 4 1 5 2

4: 5 6 2 3 4: (e) (f) (b) c d: 5 6 (2)(3)

5: 6 3 1 4 5: f c a d e: 6 3 1 4

6: 1 2 4 5 6: a b d e f: 1 2 4 5

Approximation Algorithms 2000~

Relaxed Preference Lists

- Some matchmake site
 - Thousands of men and women!
- Complete total order is unrealistic

```
2: c a e b d
```

Indifferences (ties) in the list

```
2: (c a) (e b d)
```

Incomplete lists

2: c a e

Stable Matching with Incomplete List (SMI)

1: a <u>c</u> b

a: 2 1 <u>3</u> 4 5

2: c a

b: 2 1

3: b <u>a</u>

c: <u>1</u> 2

4: c b <u>d</u> e

d: 3 1 <u>4</u>

5: c d b

e: 4 3

Matching may be partial

Stable Matching with Incomplete List (SMI)

1: (a) (c) b

a: (2) (1) 3 4 5

2: (c) (a)

b: 2 1

3: (b) a

c: (1) (2)

4: (c) b (d) e

d: 3 1 (4)

5: (c) d (b)

e: 4 3

Matching may be partial

Theorem [Gale, Sotomayor 1985] There may be more than one stable matchings, but their size is all the same and one of them can be obtained in poly time.

Theorem [Gusfield, Irving 1989, and Irving 1994] Any SMT instance admits at least one (weakly) stable matching, which can be obtained in poly time.

Theorem [Gale, Sotomayor 1985] An SMI instance may have more than one stable matching, but their size is all the same and one of them can be obtained in poly time.

Ties or Partial lists: Still OK What if both are allowed?

SM with Ties and Incomplete Lists (SMTI)

Stable matchings with different sizes

Problem of obtaining a max one (MAX SMTI)

Was open till 1999

MAX SMTI: Sequence of Results

- [I, Manlove, Miyazaki, Morita 99] MAX SMTI is NP-hard.
- Approximation Factor
- Approx ratio 2.0 is trivial because of maximal matching. But < 2.0 seems hard like min max matching and vertex cover

Is $2 - \varepsilon$ possible?

Approximation Upper Bounds

- [Halldorsson, I, Miyazaki, Yanagisawa 03]
 - 13/7 if the length of ties is two
- [Halldorsson, I, Miyazaki, Yanagisawa 04]
 - 7/4 (expected) if the length of tirs is two
- [I, Miyazaki, Okamoto 04] $2 \frac{c \log n}{n}$
- [I, Miyazaki, Yamauchi 05] $2-c/\sqrt{n}$
- [I, Miyazaki, Yamauchi 07] 15/8=1.85
- [Kiraly 08] 1.67
- [McDermid 09] 1.5

Stable Matching Is a Game

Strategy Proofness

```
3
                  a:
                                      This list is not a
                           3
                                      Nash equilibrium
3:
                         3
         a b
   a b c d
                           3
                                      Men-propose GS
   bacd
                        2 3
                                      is strategy proof for
                  c: 1 2 3
3: b a c d
                                      men.
4: c d
                      4
                         3
         a b
           d
      b
                  a:
                                      Men-propose GS
```

3

4

is not strategy proof

for women.

a)

b

3:

(c)

d

b

b:

	1	X	(b)	d	С
P(M)	2	(a)	b	С	d
_ ()	3	a	(C)	b	d
	4	а	b	С	(d)

a	1	(2)	3	4	
b	(1)	3	2	4	P(W)
С	1	2	(3)	4	
d	1	2	3	(4)	

p-unstable

					_
а	(2)	(X)	3	4	
b	1	3	2	4	Q
С	1	2	(3)	4	
d	1	(4)	3	2	

	1	(a)	b	d	С
P(M)	2	a	(b)	С	d
_ ()	3	a ((C)	b	d
	4	а	b	С	(d)

а	(1)	2	3	4	
b	1	3	(2)	4	P(W)
С	1	2	(3)	4	
d	1	2	3	(4)	

					_
а	(1)	2	3	4	
b	1	3	(2)	4	Q(W)
С	1	2	(3)	4	p-stable
d	1	(4)	3	2	Nash?

(d)

	1	(a)	b	d	С
P(M)	2	a	b	(c)	d
	3	а	С	(b)	g (
	4	а	b	С	(d)

a (1	1) 2	3	4
b ´	1 (3	2	4
C	1 (2)) 3	4
d ′	1 2	3	4

P(W)

	a	(1) 2	3	4
Q'(M)	b	1 (3)	2	4
p-stable	С	(2) 1	4	3
15	d	1 (4)	3	2

a	(1)	2	3	4
b	1	3	(2)	4
С	1	2	(3)	4
d	1	(4)	3	2

Q(W)
p-stable
Nash?

NO!

(d)

	1	(a)	b	d	С
P(M)	2	a ((b)	С	d
_ ()	3	a (C)	b	d
	4	а	b	С	(d)

a	1	2	3	4
b	1	2	3	4
С	1	2	3	4
d	1	2	3	4

P(W)

	a	1	2	3	4
Q'(M)	b	1	3	2	4
~ ` ′	С	2	1	4	3
	d	1	4	3	2

а	(1)	2	3	4
b	1	3	(2)	4
С	1	2	(3)	4
d	1	(4)	3	2

Q(W)
p-stable
Nash?

[Gupta, I, Miyazaki 16]

a	(1)	2	3	4
b	1	2	(3)	4
С	1	2	3	4
d	1	2	3	(4)

P(W)

	a	(1) 2	3	4
Q'(M)	b	1 (3)	2	4
NOT	С	(2) 1	4	3
p-stable	d	1 (4)	3	2

а	(1)	2	3	4
b	1	3	(2)	4
С	1	2	(3)	4
d	1	$\overline{(4)}$	3	2

Q(W)
p-stable
Nash?

Effectively Nash

Stable Matching

- Started 1960s
- Nobel Prize!
- Constantly rising new interesting topics
 - Real applications
 - Residents/Hospital problems with lower quota
 - Popular matchings,
 - New angles from economics groups

Local Search

```
1: (a b) a: 1 2 3
2: b (c a) b: 2
3: b c: 3 (1 2)
```

- Arbitrary tiebreak and Gale-Shapley $\Rightarrow M_0$ (guaranteed stability for the original instance)
- Size=size+1 by INCREASE $\Rightarrow M_1$
- $\Rightarrow M_2 \Rightarrow \cdots \Rightarrow M_k$
- INCREASE fails and output M_k

Ratio 2.0 is Trivial

The first M_0 is already not too small

Harmless Blocking Pairs

INCREASE: Basic Ideas

What Kind of Condition?

New partners are as good as OPT

Why the Condition is Desirable?

Why the Conditior $|M_i| < \frac{OPT}{2} + O(\log |M_i|) \Rightarrow$

$$|M_i| < \frac{OPT}{2} + O(\log|M_i|) \Rightarrow$$

of bad edges $\leq O(\log |M_i|) \Rightarrow$ *INCREASE* always succeeds ⇒ approx ratio $\leq 2 - c \frac{\log n}{n}$

 $rac{1}{c} \log |M_i| \implies \operatorname{set} |P| = c \log |M_i| + 1$ then we can increase the size by one

How to find such a P?

Lemma For any Q s.t.

(i)
$$|Q| = 4|P|$$
 and

(ii)
$$Q = \{\text{all good pairs}\},$$

 \exists such a $P \subseteq Q$

New INCREASE Achieving 1.875

[I, Miyazaki, Yamauchi 07]

Changing Pairs

so far the same size

Trying to Get +1

single men and single women

How to Get +1

Some Open Problems

- Approximability of MAX SMTI
- SM is in NC or P-complete
- The maximum possible number of stable matchings (experiments and conjectures)
- New problems are constantly coming
- Game theoretic approaches

Why the Condition is Desirable?

Cycles and Paths

This cannot happen!

Only paths are possible

Stable Matching

- 1: \underline{a} (c) b d e
- 2: c(a)e b d
- 3: b a $\left(\begin{array}{c} e \end{array}\right)$ d c
- 4: c(b)d e a
- 5: c(d)b e a

- a: $(2)_{\underline{1}}$ 3 4 5
- b: 2 1 (4) 5 3
 - c: (1)2 3 5 4
 - d: 3 1 4 2 (5)
 - e: 4 (3) 1 2 5

One-to-Many Matchings

Operations for Stable Matchings

Is a stable matching unique? No.

```
a b: 3
       c (a) b: 3
          b c: (4) 2 3 1
                                 c a (d) b c: 4
   c a (d)
     b a
           M_1
                                       M_1 \wedge M_2
                                    c b (d)
   a c b (d)
                                            a:
                              2: b d c
                                         (a)
          a b: (3) 1 2 4
                                            b:
     d (c)
3: c a d (b) c: 4 (2) 3 1
                              3: c a d (b)
                                            C:
       (a) c d: (1)
                                    b a
                                       M_1 \vee M_2
```

Extensions

- Stable roommate problem
- Relaxation of preference lists
- Different definitions for stability
- One-many matching
- Popular matching
- Game-theoretic approaches

•