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Abstract. Dynamic pricing is used to maximize the revenue of a firm over a finite-period planning
horizon, given that the firm may not know the underlying demand curve a priori. In emerging markets,
in particular, firms constantly adjust pricing strategies to collect adequate demand information, which
is a process known as price experimentation. To date, few papers have investigated the pricing decision
process in a competitive environment with unknown demand curves, conditions that make analysis
more complex. Asynchronous price updating can render the demand information gathered by price
experimentation less informative or inaccurate, as it is nearly impossible for firms to remain informed
about the latest prices set by competitors. Hence, firms may set prices using available, yet out-of-date,
price information of competitors.
In this paper, we design an algorithm to facilitate synchronized dynamic pricing, in which competitive
firms estimate their demand functions based on observations and adjust their pricing strategies in a
prescribed manner. The process is called “learning and earning” elsewhere in the literature. The goal
is for the pricing decisions, determined by estimated demand functions, to converge to underlying
equilibrium decisions. The main question that we answer is whether such a mechanism of periodically
synchronized price updates is optimal for all firms. Furthermore, we ask whether prices converge to a
stable state and how much regret firms incur by employing such a data-driven pricing algorithm.

1 Introduction

Dynamic pricing is used to maximize a firm’s revenue over a finite-period planning horizon, given that
the firm may not know the underlying demand curve a priori. In emerging markets, in particular, firms
constantly adjust their pricing strategies to collect adequate demand information, which is a process termed
price experimentation by [5], [13]. Currently, few papers exist that consider competitive environments with
unknown demand curves. Such conditions add greater complexity to the analysis of the decision process.
Evaluating the influence of decisions made by competitors is challenging. If a firm is sensitive to competi-
tor prices, one might expect a change in the prices set by a firm to provoke an immediate response from
competitors. Such asynchronous price updating renders the demand information gathered by price experi-
mentation neither informative nor accurate, as it is almost impossible for each firm to remain informed about
the current prices set by competitors. Although firms may still observe the market response of consumers
given competitor pricing, the use of out-of-date price information is possible. A mechanism of synchronized
dynamic pricing thus arose. Such a mechanism ensures that the pricing strategy of each firm is adjusted in
a prescribed way to jointly collect demand information and make pricing decisions.

Consider a total of N firms selling an identical product in an oligopolistic market, in which the true
underlying demand curve and the presence of demand shocks are unknown. Over a time horizon of T periods,
firms make pricing decisions in each period t = 1, · · · , T . Firm i’s decision at period t is denoted by pit, and
the demand for firm i’s product in period t is denoted by Di

t(pt) = λi(pt) + εit, where pt ≡ [p1t , · · · , pNt ]
represents the pricing decisions of all firms. The price set by a firm is the only information that its competitors
can observe. Hence, firms are unable to estimate the demand of competitors. Without loss of generality, we
assume that the mean value of Di

t is given by the average rate λi, conditional on the price vector of all
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companies, while εit measures the demand shock in period t. Note that λi(p) reflects the fact that firm i
acknowledges that the price decisions made by other firms will influence the demand for the product of
firm i. By focusing on competition among the N firms, we do not consider capacity limitation, production
cost or marginal cost. Each firm is assumed to be selfish and reacts immediately to price changes made
by competitors. The goal of each firm is to sequentially set a price to maximize revenue under demand
uncertainty and competition.

Finding the equilibrium pricing strategy is a challenge that each firm must tackle. To do so requires
that firms constantly adjust prices according to the best response pricing strategy. In particular, when the
demand function is unknown, determining a suitable function for demand estimation will directly affect the
pricing decision. Such an estimation should consider the behaviour of competitors and the market response.
Fortunately, there is evidence that linear functions serve as good approximations of underlying demand
functions and allow pricing decisions to converge to an optimum in [3]. The present study designs an algorithm
of synchronized dynamic pricing in which firms in competition estimate their demand functions based on
observations and adjust their pricing strategies in a prescribed manner to maximize their revenues. The
process is termed learning and earning elsewhere in the literature. The goal of the process is for the pricing
decisions, determined by an estimated demand function, to converge to an underlying equilibrium decision.
The main question that we wish to answer is whether such a mechanism of periodically synchronised price
updating is optimal for all firms. Specifically, we ask whether the mechanism may allow prices to reach a
stable state and how much regret firms incur by employing such a data-driven pricing algorithm.

1.1 Our Results

This paper generalizes the work of [3], who constructed a dynamic pricing algorithm in a monopoly
setting in which a single firm chooses a price to maximize expected revenue without knowledge of the true
underlying demand curve. Although consideration of a competitive environment is complicated, we are still
able to obtain notable results, and, if the market is a monopoly, these findings are consistent with the results
of [3].

We propose a data-driven equilibrium pricing (DDEP) algorithm to solve the dynamic pricing decisions
of each firm in competition. As the true demand curve is unknown, each firm must estimate a demand curve
via a linear approximation scheme in which prices are varied to develop better pricing strategies. Throughout
the paper, we use period t or, equivalently, time t. Let pi∗t denote the equilibrium price of firm i at time t,
which is obtained by the estimated demand curve of firm i at time t, and let p−i

t denote the prices of other
competitors. A clairvoyant model implies that a firm has knowledge of the underlying demand curve and
the distribution of demand shocks. The goal of learning is to make pit converge to the clairvoyant equilibrium
price of firm i, pi∗, as t grows large. Note that a learning scheme in which the difference between pit and
pi∗ will eventually converge to zero is called complete learning; otherwise, it is termed incomplete learning.
In a competitive environment, it is not possible for a firm to achieve complete learning alone due to the
influence of strategies employed by competitors. Our synchronised pricing algorithm ensures that all firms
in the market jointly adjust their prices to achieve complete learning.

In an alternative scenario, in which some firms have knowledge of the demand function and the distri-
bution of demand shocks, such firms may be unwilling to engage in price experimentation. Therefore, we
propose a modified DDEP algorithm to account for this. In such cases, the approximate demand function
does not estimate the effects of firms with known demand, an idea originating from work by [8]. However, our
mechanism requires all that firms set prices simultaneously. As a result of the information asymmetry, the
pricing of firms with unknown demand will not be affected by the firms with the knowledge of the demand
curves; however, the pricing of the firms with the knowledge of the demand curves will be affected by firms
with unknown demand.

The process of learning is often evaluated in terms of regrets. In our setting, the definition of regret is
quite different from that which is commonly used in a monopoly setting in which a firm is playing against
the market demand (without competitors); see [3], [6]. In our study, a firm’s regret is described over a
time interval given by the difference between the realized revenue and optimal expected revenue, given that
other competitors stick to the pricing decisions determined by the pricing algorithm. We also analyze the
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revenue difference obtained by the algorithm from that obtained by the clairvoyant Nash equilibrium p∗ per
algorithm iteration, which are discussed in further detail in Section 2.3.

The main results of our work are as follows:

– The best response function derived by DDEP through the quadratic concave function will generate the
sequence {pt} that converges to p∗ as t grows large. (Theorem 1)

– As time progresses, the accumulated revenue of each firm generated by the pricing policies of DDEP
algorithm is asymptotically close to the clairvoyant accumulated revenue. (Theorem 3)

– The revenue difference converges to zero as time progresses and is related to the quantity of firms in
competition. The difference implies that realised revenues are sometimes greater than those revenues
obtained by the clairvoyant Nash equilibrium p∗. However, we are unable to predict when this will
occur. (Theorem 2)

– If some clairvoyant firms with knowledge of the demandprice relationship do not participate in price ex-
perimentation and those firms without knowledge of the demand functions use the partially-flawed linear
approximate demand functions (according to the definition in [8]), then the sequence {pt}, generated by
the modified DDEP may still converge to p∗. Furthermore, the convergence rate of regret among firms
without knowledge of the demand curve is related to the quantity of such firms, while the convergence
rate among firms with knowledge of the demand curve is not. (Theorem 5)

1.2 Related Work

To conclude this section, we briefly review the literature that is most related to our work.

– Learning algorithms for pricing models in a monopoly market. Dynamic pricing is a critical
tool for revenue management. The problem of unknown demand functions has been widely explored
in the literature. One common theme of the existing work focuses on the task firms face to arrive at
optimal pricing decisions when the underlying demand curve is unknown and how to lower the growth
rate of regret. [2] assumed that the demand function belongs to a known parametric family with unknown
parameter values and develop a non-parametric pricing policy that achieves asymptotic optimality. The
structure relies on price experimentation to infer accurate information about the demand function. Since
price experimentation can be costly, some papers focus on a balance between the explorationexploitation
trade-off. [5] used maximum-likelihood estimation to build the pricing policy and [4] proposed a policy
of gradually reducing the taboo interval to achieve asymptotically optimal pricing. The two policies that
they proposed can be regarded as iterated least squares. [13] provided a generally sufficient condition for
iterated least squares methods which ensures that regret does not exceed the order of

√
T . A common

feature of previous work is that the underlying demand model is assumed to be the same as the parametric
demand function and is thus well-specified. [3] proposed a pricing policy constructed on the assumption
that the underlying demand curve is non-linear but used a linear approximation to model the market
response to the offered price. We refer readers to [6] and [7] which extend the model to coordinate pricing
and an inventory control problem.

– Dynamic pricing in a competitive environment. Few papers consider dynamic pricing with com-
petition, as this type of problem requires a game-theoretic approach to obtain a solution. Some studies
consider non-cooperative competition in revenue management, where the products are differentiated, for
example, at the service-level or based on certain attributes of the goods on which consumer choice closely
depends. [15] presented a dynamic pricing model in which strategic consumers choose differentiated per-
ishable goods. With firms able to benefit from a lack of complete information among consumers, they
provide an analysis of the equilibrium price dynamic under different market settings. [10] also studied
how consumer choice depends not only on price, but also on purchase time and product attributes; they
showed that the shadow price solved by the deterministic problem can be used to construct an asymptotic
equilibrium pricing policy. When different companies sell identical goods, the market response depends
mainly on the price. [8] used a “flawed” demand function without incorporating competitor prices and
showed that (a) the prices converge to the Nash equilibrium if the slope is known to the seller, (b) the
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prices converge to the cooperative prices if the intercept is known to the seller, and (c) there are many
potential limit prices that are neither Nash equilibrium nor cooperative prices if the parameters of the
demand function are unknown.

– Learning algorithms for pricing models in a competitive environment. If the content of learning
is incorporated into the pricing policy, companies are able to learn the response of consumers and
competitors, continuously adjusting pricing to achieve optimality over time. [1] considered a myopic
pricing policy in a competitive oligopolistic environment. In such a case, a given firm must estimate
not only its own demand but also the demand and pricing of competitors. A method of mathematical
programming with equilibrium constraints is applied to formulate the model to estimate the competitor
parameters. [12] proposed further improvements that adjusted the most accurate parameters of demand
function periodically based on the equilibrium demands. [11] considered a firm selling a single product
with multiple versions and developed a multinomial logit choice demand model, commonly used in
the context of non-cooperative competition between firms selling differentiated goods, each seeking to
maximize total revenue. Bayesian updating is used to estimate the unknown arrival rate, and maximum
likelihood estimation is used to update the core value. They showed that the unknown parameters can
be estimated simultaneously while sales are changing. [14] used the observed sales data to estimate the
parameters of demand by Kalman filtering, showing that a differential variational inequality can be
used to model the non-cooperative competition. [9] conducted two field experiments with randomized
prices. The first experiment estimated a consumer choice model in which observations of sales made by
competitors are not required, and the second tested a best response pricing strategy.

2 Model and Preliminaries

We consider a periodical equilibrium pricing problem for N firms. In each period t = 1, · · · , T , each
firm needs to set prices pit, chosen from a feasible and bounded policy set P i =

[

pi,ℓ, pi,h
]

, pi,ℓ < pi,h,
∀i = 1, · · · , N . The prices set by firms affect the market response of all firms in the competition. Recall that
p ≡ (pi, p−i) denotes the vector of prices of all firms in the competition. The market response to the price pit
for firm i at time t (which is exactly the demand function) is given by Di

t(pt) = λi(pt) + εit, ∀i = 1, · · · , N,
in which λi(pt) is a deterministic twice differentiable function representing the mean demand, conditional on
the price pt, and εit are zero-mean random variables, assumed to be independent and identically distributed.
Hence, the demand curve λi(p) of firm i not only depends on the price pi, chosen by itself, but also on
the prices of other firms p−i, where p−i =

{

p1, · · · , pi−1, pi+1, · · · , pN
}

. Let πi = (pi1, p
i
2, · · · ) denote the

sequence of pricing policy of firm i and Π = (π1, · · · , πN ) denote the admissible pricing policies of all firms.
The revenue function ri of firm i obtained from prices p is denoted by ri(p) ≡ piE[Di(p)]. Each firm seeks
to maximize its revenue in a competitive environment. Since the feasible strategy set of firm i depends on
the pricing strategies of competitors, the equilibrium prices of all firms are a generalised Nash equilibrium
(GNE). We make the following assumptions:

Assumption 1 For any pi ∈ P i,

(i)
∂λi(·, p−i)

∂pi
< 0, ∀i = 1, · · · , N ,

(ii)
∂λi(pi, p−i\j , ·)

∂pj
> 0, ∀j 6= i, i = 1, · · · , N ,

(iii)
∂2ri(p)

∂2p
, ∀i = 1, · · · , N is a negative semi-definite matrix.

Assumption (i) ensures that for every firm i, the underlying demand function λi(·, p−i) is strictly de-
creasing on pi given the prices set by other firms, p−i. Assumption (ii) dictates that λi(pi, p−i\j , ·) is strictly
increasing on pj with pi and p−i\j given, in which p−i\j represents the vector constituted by all prices except
pi and pj. Assumption (iii) dictates that the revenue function ri(p) is a concave function and there exists a
unique maximizer for any feasible p.
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For every firm i, if the underlying demand curve λi(·) and the distribution of the random error εi are
known a priori, the optimal pricing decision is obtained by solving the following revenue maximization
problem:

maximizepi,Di ri(p) ≡ piE
[

Di(p)
]

subject to E
[

Di(p)
]

≥ 0, pi ∈ P i, ∀i = 1, · · · , N
(1)

A vector p ≡ (pi, p−i) is feasible for the GNE problem if it satisfies the constraint λi(p) ≥ 0 for all firms
i = 1, · · · , N . A feasible vector p∗ is a solution to the problem of GNE if, for all firms i = 1, · · · , N , we have

ri(pi∗, p−i∗) ≥ ri(pi, p−i∗) ∀pi : λi(pi, p−i∗) ≥ 0

It is well known that if there exists a vector p∗ and multipliers that satisfy the following KKT system for
each firm i:

[

λi(p) + pi∇piλi(p) + E(εi)
]

+ µi,1
[

∇piλi(p)
]

− µi,2 + µi,3 = 0 ∀i
µi,1 ≥ 0, µi,1 ·

[

λi(p) + E(εi)
]

= 0, λi(p) + E(εi) ≥ 0, ∀i
µi,2 ≥ 0, µi,2 · (pi,h − pi) = 0, pi,h − pi ≥ 0 ∀i
µi,3 ≥ 0, µi,3 · (pi − pi,l) = 0, pi − pi,l ≥ 0, ∀i,

(2)

then the vector p∗ is a GNE.
Due to the lack of information about the underlying demand curves, firms must collect enough obser-

vations to estimate the demand functions. We assume that only the offered prices pt are observed by all
competitors at time t and that every firm is aware of past sales data. To mitigate the negative effects arising
from not knowing the demand function, every firm is motivated to learn of it. Each firm completes the process
of learning on its own. The mechanism controls the learning process of all firms and guarantees that prices p
converge to the clairvoyant GNE p∗, which are the solutions to the above system in the case of clairvoyant
demand. We describe the learning process as complete learning if the gathered information is sufficient and
the price of each firm pit converges to pi∗ in probability as t goes large. Under the mechanism, every firm
strictly follows a complete learning process. Otherwise, price pit would not converge to pi∗, meaning that
the process constitutes incomplete learning. Complete learning is critical for the market to stabilise. Then,
this mechanism allows firms to share the estimators of the demand curve with each other to generate the
equilibrium price, and each firm reprices at the new equilibrium price.

2.1 Performance Measures

For each feasible pricing policy Π generated by the algorithm, we examine it in two ways. The first
method is to evaluate whether p̂n will converge to p∗; the second is to measure the impacts of p̂t on each
firm i’s revenues. We quantify this impact as regret which is defined as

Ri(πi, T ) = E

[

T
∑

t=1

ri(pi∗t , p−i
t )

]

− E

[

T
∑

t=1

ri(pit, p
−i
t )

]

(3)

We are most concerned with whether the average regret per period, Ri(π, T )/T converges to zero with an
acceptable convergence rate. The definition of regret in the monopoly setting is worse-case regret, which is
the revenue of a single firm generated by a given pricing policy compared to the optimal revenue generated
by the firm with the knowledge of the demand curve.

However, this definition is not suitable for our setting since revenues obtained at clairvoyant GNE p∗

are not optimal. Alternative pricing vectors p may exist that lead to higher revenues than those at p∗ when
firms search for an equilibrium point (see also in [8]). What should be emphasised here is that this situation,
in which price vectors are not Nash equilibrium points and incentives remain for firms to change their prices,
may happen when all firms engage in non-cooperative competition. Compared to the revenues obtained by
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the pricing policies Π , the revenues obtained by the clairvoyant Nash equilibrium may be higher or lower.
We define the revenue difference as

Di(πi, T ) =

∣

∣

∣

∣

∣

E[

T
∑

t=1

ri(pi∗, p−i∗)]− E[

T
∑

t=1

ri(pit, p
−i
t )]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

pi∗λi(p∗)T − E[

T
∑

t=1

pitD
]
t

∣

∣

∣

∣

∣

(4)

to evaluate it. The revenue difference is positive in each period. As it is impossible to determine whether
revenues obtained by the clairvoyant Nash equilibrium are less than those obtained by the pricing policies
Π , the difference per period between the two is expressed as an absolute value no less than zero.

2.2 Algorithm

We propose a DDEP algorithm to solve the pricing decisions of each firm in competition. DDEP operates
in stages, which we index by n for n = 0, 1, 2, · · · . Every stage is equally separated as N + 1 time intervals,
which we index by m for m = 1, 2, · · · , N + 1, and each interval contains In periods (i.e., time steps). In
the beginning of stage n, firm i publishes a price p̂in, the vector of all prices is denoted as p̂n. As there
are (N + 1)In periods in one stage, the notation tn represents period t at the beginning of stage n. In
Step 1, firm i’s price pit = p̂in will not be changed in NIn but will be changed in 1 time interval if the
index m is equal to the firm index i. Therefore, all firms are required to adjust their prices sequentially and
collect sales information. Using the observations in stage n, the demand functions λi(·) of all firms are then
approximated by a simple linear function. At the end of stage n, all firms need to find the current GNE
p̂n+1 for the next stage, which is computed by an approximate demand function. Now, we present in detail
the DDEP algorithm looping n from 0 until a terminal stage, given as period T .

– Step 0. Preparation: If n = 0, input I0, v, and p̂i1, ∀i = 1, · · · , N . If n > 0, set In = ⌊I0vn⌋ and δn = I
− 1

4
n .

– Step 1: Setting prices. Loop m from 1 to N + 1. The rule of firm i’s price pit at time t is

if m 6= i,
pit = p̂in, ∀t = tn + 1, · · · , tn + iIn, tn + (i+ 1)In + 1, · · · , tn + (N + 1)In,
if m = i,
pit = p̂in + δn, ∀t = tn + iIn + 1, · · · , tn + (i+ 1)In.

End the m-loop. Set tn+1 = tn + (N + 1)In.

– Step 2. Estimating:

(α̂i
n+1, β̂

ij
n+1) = arg min

αi,βij











t=tn+(N+1)In
∑

t=tn+1



Di
t −
(

αi − βiipit +

N
∑

j=1,j 6=i

βijpjt

)





2










.

– Step 3. Computing the equilibrium: We define the following optimization problem for firm i:

max
pi

rin+1 ≡ max
pi

Gn+1

{

pi, p−i, α̂i
n+1, β̂

ij
n+1

}

,

where Gn+1

{

pi, p−i, α̂i
n+1, β̂

i
n+1

}

≡







pi



α̂i
n+1 − β̂ii

n+1p
i +

N
∑

j=1,j 6=i

β̂ij
n+1p

j





∣

∣

∣

∣

∣

∣

α̂i
n+1 − β̂ii

n+1p
i +

N
∑

j=1,j 6=i

β̂ij
n+1p

j ≥ 0, pi ∈ P i







.
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Proceeding to solve the system:

[

α̂i
n+1 − 2β̂ii

n+1p
i +

N
∑

j,j 6=i

β̂ij
n+1p

j

]

+ µi,1
[

−β̂i
n+1

]

− µi,2 + µi,3 = 0 ∀i,

µi,1 ≥ 0, µi,1 ·



−α̂i
n+1 + β̂ii

n+1p
i −

N
∑

j,j 6=i

β̂ij
n+1p

j



 = 0, α̂i
n+1 − β̂ii

n+1p
i +

N
∑

j,j 6=i

β̂ij
n+1p

j ≥ 0 ∀i,

µi,2 ≥ 0, µi,2 ·
(

pi − pi,h
)

= 0, pi,h − pi ≥ 0 ∀i,
µi,3 ≥ 0, µi,3 ·

(

pi,l − pi
)

= 0, pi − pi,l ≥ 0 ∀i.

(5)

Then, prices for each firm p̂in+1 are set to the unique solution of this system. Set n = n+ 1 and return

to Step 0.

During the DDEP operation cycle in Step 1 to explore the sensitivity of the market to price changes,
each firm must adjust the price by adding δn. In Step 2, the underlying demand function of all firms is
estimated using linear regression. Note that we only use the data gathered in this stage since past data may
lead to inaccurate estimation of the demand function. If the underlying demand curve is a linear function,
we can use all the cumulative data for the estimation due to the unchanging market sensitivity provided
that price changes. However, as the underlying demand curve is not known a priori, market sensitivity may
keep changing as the prices change if the demand function is misspecified. In Step 3, the mechanism solves
the KKT system (5), which includes the revenue optimization problem of all firms, providing a way to
compute the equilibrium under the approximated demand. The solutions to system (5) will be used for the
next stage. The structure of operation cycles has been frequently utilized elsewhere in research on learning
and pricing problems. [3] proposed a pricing policy to learn the demand function and find optimal pricing
corresponding to the approximate demand function. DDEP is a generalization of their work, in which there
are no competitors (N = 1), so the number of periods needed for each stage reduces to be equal to the
number in their work. An important piece of later work is that of [6], which considers joint pricing and
inventory control with backlog, assuming that the underlying demand model is multiplicative. Their work
achieved minimal possible regret growth. In another paper, [7] considered the inventory problem with lost
sales in which the underlying demand model is assumed to be additive.

3 Analysis: Convergence, Revenue Difference, and Regret

Although a linear demand function suffices to estimate various underlying demand patterns in a monop-
olistic setting in [3], the goal of this paper is to investigate whether such a linear model remains suitable in a
competitive setting. To this end, we start by analysing the limit point of {p̂n} given its existence. We divide
the analyses into two parts: first, we argue by intuition that when the limit price exists and the noise is
absent, no unilateral changes on limit price p̃i will maximize the revenue function for an individual player i;
that is, limit price is exactly the clairvoyant GNE. Second, we argue that this statement remains true when
noise is present.

We formally show in Section 3.1 that the pricing decision of each firm will converge to the clairvoyant
GNE p∗ in probability if all firms accept the synchronized control. We find that the average regret defined
in (3) converges to zero and the convergence of difference defined in (4) is dependent on the number of
competitors. We discuss the revenue difference bound and a regret bound in Section 3.2.

Analysis for the Noiseless Case.

Lemma 1. Suppose that εit = 0, ∀i and t, and that the sequence {p̂n}, assuming nonzero demand and
that the price is away from the limits, generated by DDEP converges to a limit point p̃, which satisfies

p̃i = − λi(p̃)

∇piλi(p̃)
. Then, p̃ is exactly p∗.
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Proof. Without noise, the estimate of the coefficients has a closed-form expression in terms of the rate of
demand change with respect to the price increment δn:

β̂ii
n+1 = −λi(p̂in + δn, p̂

−i
n ; )− λi(p̂n)

δn
, ∀i, and (6)

β̂ij
n+1 =

λi(p̂jn + δn, p̂
−j
n )− λi(p̂n)

δn
, ∀i, j, i 6= j, (7)

where λi(p̂jn + δn, p̂
−j
n ) denotes the the demand faced by firm i at the price vector whose jth element is

p̂jn + δn and those of others are p̂−j
n . It can be inferred from the design of Step 2 in the algorithm that

α̂i
n+1 = λi(p̂n) + β̂ii

n+1p̂
i
n −

N
∑

j,j 6=i

β̂ij
n+1p̂

j
n, ∀i, (8)

and that the closed-form (unconstrained) maximizer of the revenue function is expressed as

p̂in+1 =

α̂i
n+1 +

N
∑

j 6=i

β̂ij
n+1p̂

j
n+1

2β̂ii
n+1

, ∀i. (9)

Suppose that the sequence {p̂n} converges to limit vector p̃. It must be, therefore, that the sequence {β̂ii
n }

converges to β̃ii and {β̂ij
n } converges to β̃ij , where

β̃ii = −∇piλi(p̃) and β̃ij = ∇pjλi(p̃).

Therefore, (8) implies that {α̂i
n} must converge to

α̃i = λi(p̃) +∇piλi(p̃)p̃i −
N
∑

j 6=i

∇pjλi(p̃)p̃j .

Thus, p̃i must satisfy the following equation:

p̃i =

α̃i +
N
∑

j 6=i

β̃ij p̃j

2β̃ii
=

p̃i

2
− λi(p̃)

2∇piλi(p̃)
.

The equation above is exactly the first order condition for firm i’s revenue maximization problem. In a
competitive environment, the best response function can be inferred by the first-order condition for each firms
revenue maximisation problem. Hence, p̃ must be the unique clairvoyant GNE p∗, which can be obtained
by solving the concatenated first-order conditions.

Intuitively, the statement in Lemma 1 still holds when the environment is noisy.

Analysis with Noise. In fact, noise εit always exists over the time horizon T . Hence,

β̂ii
n+1 = −

t=tn+(i+1)In
∑

t=tn+iIn+1

(

λi(p̂in + δn, p̂
−i
n ) + εit

)

−
t=tn+In
∑

t=tn+1

(

λi(p̂n) + εit

)

Inδn

= −∇piλi(p̂n) +O(δn) +
1

δn

1

In





t=tn+(i+1)In
∑

t=tn+iIn+1

εit −
t=tn+In
∑

t=tn+1

εit



 , ∀i, and
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β̂ij
n+1 =

t=tn+(j+1)In
∑

t=tn+jIn+1

(

λi(p̂jn + δn, p̂
−j
n ) + εit

)

−
t=tn+In
∑

t=tn+1

(

λi(p̂n) + εit

)

Inδn

= −∇pjλi(p̂n) +O(δn) +
1

δn

1

In





t=tn+(j+1)In
∑

t=tn+jIn+1

εit −
t=tn+In
∑

t=tn+1

εit



, ∀i, j,

where O(δn) denotes the quantity that is, at most, some constant multiplied by δn. Derived using Hoeffdings
inequality (formally in Appendix B), an exponential bound shows that

I−1
n





t=tn+(i+1)In
∑

t=tn+iIn+1

εit −
t=tn+In
∑

t=tn+1

εit



 and I−1
n





t=tn+(j+1)In
∑

t=tn+jIn+1

εit −
t=tn+In
∑

t=tn+1

εit





may be bounded above by a factor of (log(In)/In)
1/2 with high probability. As n grows, δn and thus

δ−1
n (log(In)/In)

1/2 converge to zero (proved formally in Proposition 3), then

β̂ii
n+1 ≈ −∇piλi(p̂n) and β̂ij

n+1 ≈ ∇pjλi(p̂n).

In particular, when explicitly accounting for noise, the arguments above ensure that the effects of noise
vanish as n increases and that the fitted linear model can serve as an estimation of the underlying demand
model without being affected by N .

However, we show later that when facing competition, the upper bound of revenue regret, derived in the
same way as that of one firm, is scaled by N (i.e., Theorem 3), the upper bound of revenue difference is
scaled by N2 (i.e., Theorem 2), and the deviation between the best responses and the clairvoyant GNE price

is upper bounded by a factor of N2I
− 1

2
n (i.e., Inequality (11)).

3.1 Convergence

We clarify that p̂n+1 generated by DDEP is obtained by the KKT system (5) while the clairvoyant GNE

p∗ is obtained by (2). We introduce an operator zi
(

ᾰi(p), β̆ii(p), β̆ij(p)
)

that represents the best response

of firm i when there is no estimation error, and we write firm i’s revenue as

ri = pi



ᾰi(p)− β̆ii(p)pi +

N
∑

j=1,j 6=i

β̆ij(p)pj



 ,

where

ᾰi(p) = λi(p)−∇piλi(p)pi +

N
∑

j=1,j 6=i

∇pjλi(p)pj and β̆ij(p) =

N
∑

j=1

∇pjλi(p)pj .

Let z(p) =
(

zi
(

ᾰi(p), β̆ii(p), β̆ij(p)
))N

i
be the collection of best responses of all firms. We state some

assumptions associated with our main results.

Assumption 2 1. For every zi, we have max
pi∈Pi

∣

∣

∣

∣

∣

∣

dzi
(

ᾰi(p), β̆ii(p), β̆ij(p)
)

dpi

∣

∣

∣

∣

∣

∣

< 1 .

2. For every firm i, the variance of each firm’s εi is equal to σ2.
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The first part of the above assumption ensures that zi
(

ᾰi(p), β̆ii(p), β̆ij(p)
)

constitutes a contraction map-

ping, and thus there exists a unique fixed point. We observe that pi∗ is the fixed point of

zi
(

ᾰi(pi, p−i∗), β̆ii(pi, p−i∗), β̆ij(pi, p−i∗)
)

, implying that zi
(

ᾰi(pi, p−i∗), β̆ii(pi, p−i∗), β̆ij(pi, p−i∗)
)

= pi∗ =

z̄i(pi, p−i∗), where z̄i(pit, p
−i
t ) denotes the best response of firm i when when its competitors set price p−i

t at
time t. We need the second part of the assumption, the homogeneity of variance, to ease our analysis. Hence,
we make the following proposition.

Proposition 1

If pi∗ = zi
(

ᾰi(pi, p−i∗), β̆ii(pi, p−i∗), β̆ij(pi, p−i∗)
)

, then there exists a constant γ ∈ (0, 1) such that

‖p∗ − z(p̂n)‖ ≤ γ ‖p∗ − p̂n‖ .

Proposition 1 is based on a deterministic (mean) demand function, and the convergence result follows
directly from the property of a contraction mapping. Now, we focus on a randomized demand function and
we aim to establish the convergence result as follows.

Theorem 1

Under Assumptions, the GNE, p̂n converges in probability to p∗ as n → ∞.

Theorem 1 states that the prices generated by our algorithm DDEP converge in probability to GNE
p∗, which is the solution that satisfies the KKT system (2). The principle technique for establishing the
convergence of price in probability is described below. Let the price vector p̂n+1 be the solution of the KKT
system (5), which means that p̂n+1 is the Nash equilibrium. Fix p̂−i

n+1 and let Ci
n denote the difference between

zi
(

ᾰi(pi, p̂−i
n+1), β̆

ii(pi, p̂−i
n+1), β̆

ij(pi, p̂−i
n+1)

)

and zi
(

α̂i
n+1, β̂

ii
n+1, β̂

ij
n+1

)

, in which the former one represents

the best response of firm i to maximize the following revenue function

rin+1 = pi



ᾰi(pi, p̂−i
n+1)− β̆ii(pi, p̂−i

n+1)p
i +

N
∑

j=1,j 6=i

β̆ij(p̂n+1)p̂
j
n+1



.

While the latter represents the best response of firm i seeking to maximize a second format of revenue
function, utilizing fitted rather than the revealed demand is different from the real revenue,

rin+1 = pi



α̂i
n+1 − β̂ii

n+1p
i +

N
∑

j=1,j 6=i

β̂ij
n+1p̂

j
n+1



 .

As shown, p̂in+1 is the fixed point of zi
(

α̂i
n+1, β̂

ii
n+1, β̂

ij
n+1

)

obtained when other players fix prices as p̂−i
n+1.

We present the following proposition:

Proposition 2

For any given p̂in ∈ P i generated by DDEP, with high probabilitya the following inequality holds

‖z(p̂n)− p̂n+1‖ ≤ ‖Cn‖,

where Cn ≡
[

C1
n, · · · , CN

n

]

is a vector of constants.

a The probability lower bound is specified in the proof of Proposition 3.
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Proposition 2, which is proved in Appendix A, shows that the difference between these best response
functions is bounded with high probability. Note that z(p̂n) denotes the collection of all firms’ best responses

zi
(

ᾰi(p̂n), β̆
ii(p̂n), β̆

ij(p̂n)
)

. The inequality in Proposition 2 may not hold because it is reliant on a good

event-that the demand shocks εt do not cause poor estimation of the parameters. Note that if one firm is
unable to make a sufficiently good estimation, other firms will be affected. The effect of price experimentation,
in which adding δn affects the demand of all participants, should gradually vanish over time. Otherwise, it
will cause a poor estimation of the parameters even if demand shocks do not exist.

Broadly speaking, the argument above, together with Proposition 1 provides a constructive way to design
effective price experimentation to obtain pricing convergence. The next proposition gives an upper bound
for the expectation of the difference between the two best response functions in Proposition 2.

Proposition 3

At stage n, for some suitable constant K1, the operator z(p̂n) and the DDEP generated p̂n+1 satisfy

E
[

‖z(p̂n)− p̂n+1‖2
]

≤ N2K1I
− 1

2
n .

Proposition 3, proven in Appendix B, also provides an upper bound for the deviation between z(p̂n) and
p̂n+1. The upper bound is related to the squared number of competitive firms, N2, and converges to zero as
the number of stages increases.

Proof (Proof of Theorem 1). We obtain an upper bound of E[(p̂n+1 − p∗)2], a result that has been proved
previously. Combining the results in Propositions 13, it follows that

E
[

‖p̂n+1 − p∗‖2
]

≤ E

[

(‖p∗ − z(p̂n)‖+ ‖z(p̂n)− p̂n+1‖)2
]

≤ E

[

(γ‖p∗ − p̂n‖+ ‖z(p̂n)− p̂n+1‖)2
]

≤
(

1 + γ2

2

)

E
[

‖p∗ − p̂n‖2
]

+K2E
[

‖z(p̂n)− p̂n+1‖2
]

≤
(

1 + γ2

2

)

E
[

‖p∗ − p̂n‖2
]

+N2K3I
− 1

2
n . (10)

The first inequality uses the triangle inequality. The second inequality is from Proposition 1 with the constant
γ ∈ (0, 1). Note that

(

√

2γ

1− γ2
E
[

‖z(p̂n)− p̂n+1‖2
]

−
√

1− γ2

2γ
E [‖p̂n − p∗‖]

)2

≥ 0, and

2E [‖p̂n − p∗‖]E [‖z(p̂n)− p̂n+1‖] ≤
2γ

1− γ2
E
[

‖z(p̂n)− p̂n+1‖2
]

+
1− γ2

2γ
E
[

‖p̂n − p∗‖2
]

.

Hence, the third inequality is obtained:

E
[

‖p̂n+1 − p∗‖2
]

≤ 1 + γ2

2
E
[

‖p̂n − p∗‖2
]

+K2E
[

‖z(p̂n)− p̂n+1‖2
]

.
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Selecting some appropriate constant K3 and combining it with the results in Proposition 3, we obtain the

last inequality. Let η = 1+γ2

2 , and we obtain that

E
[

‖p̂n+1 − p∗‖2
]

≤ ηn‖p1 − p∗‖2 +N2K3

n−1
∑

h=0

ηhI
− 1

2

n−h

≤ ηn‖p1 − p∗‖2 +N2K3

n
∑

h=0

ηhI
− 1

2

n−h

≤ N2K4(v
− 1

2 )n
n
∑

h=0

ηhvh,

where v is selected to satisfy ηv
1
2 < 1 and there exists some appropriate K5, such that

E
[

‖p̂n+1 − p∗‖2
]

≤ N2K5I
− 1

2
n . (11)

Since η < 1 and I
− 1

2
n → 0 as n → ∞, E

[

‖p̂n+1 − p∗‖2
]

→ 0.
The convergence implies that if N is considered fixed, as n → ∞, the difference of p̂n+1 and p∗ will tend

to zero. Hence, we demonstrate that the generalized equilibrium price will converge to the clairvoyant GNE
p∗ in probability.

3.2 Revenue Difference and Regret

Theorem 1 provides the asymptotically equilibrium result for the equilibrium pricing problem: under the
designed mechanism, it suffices to show that the linear model guarantees convergence to clairvoyant GNE
p∗. This result offers a fundamental basis for the following analysis. We first analyze the revenue difference,
as it may yield useful insights into regret analysis. Recall that the revenue difference denotes the difference
in the revenue obtained when all firms set the price to p∗ and that obtained when the price is set at pt.

Theorem 2: Revenue Difference

Under Assumptions, the sequence of the generalized Nash equilibrium {p̂t : t ≥ 1} satisfies

E

[

T
∑

t=1

[

∣

∣ri(pi∗, p−i∗)− ri(pit, p
−i
t )
∣

∣

]

]

≤ N2K6T
1
2 , ∀i = 1, · · · , N,

for some positive constant K6, T ≥ 2, and N ≥ 2.

Theorem 2, whose proof is in Appendix C, implies that by using this pricing policy, even if the underlying
demand function is unknown, the difference between the revenue ri(pi∗, p−i∗) at the clairvoyant p∗ and the

revenue ri(pit, p
−i
t ) at pt obtained by DDEP is at most N2K6T

1
2 , in which N represents the number of

participating firms. In other words, the revenue difference per period converges to zero. When N equals to
1, meaning there are no competitors in the market, the upper bound is O(T 1/2).

The common approach in regret analysis in a monopolistic setting, such as that of [3], [7] and [6], involves
a Taylor expansion to let the revenue function ri(pit, p

−i
t ) be approximated at p∗; that is,

ri(pit, p
−i
t ) = ri(pi∗, p−i∗) +∇ri(pi∗, p−i∗)T (p∗ − p)

+
1

2
(p∗ − pt)

T∇2ri(pi∗, p−i∗)(p∗ − pt).

Suppose that no competitors exist and the term ∇ri(pi∗) is equal to zero, then regret can be expressed
as ∇2ri(pi∗)|pi∗ − pit|2 and the upper bound can be inferred by the result of (11). However, as the term
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∇ri(pi∗, p−i∗) is a vector and not equal to zero in our setting, the traditional approach is not suitable for our
analysis. It is possible that certain price vectors may yield a higher revenue than Nash equilibrium prices.
Despite this, we can prove the same result using the negative semi-definiteness property of the revenue
function.

Theorem 2 gives us an upper bound on revenue difference, and we now analyze the revenue regret. It is
known that the price pit of firm i made by DDEP is not necessarily the optimal price that truly maximize i’s
own revenue. Such a true optimal price pi∗t is derived from the true best response function with respect to
the true demand. Suppose firm i realizes the true demand function at some time T . In such a case, the firm
will regret making the price decision at pit rather than pi∗t during the past time interval t = 1, . . . , T . Hence,
we obtain the following theory concerning the regret bound:

Theorem 3: Regret

Under the defined assumptions, the sequence of optimal decisions {pi∗t : t ≥ 1} satisfies

E

[

T
∑

t=1

[

ri(pi∗t , p−i
t )− ri(pit, p

−i
t )
]

]

≤ K7NT
1
2 , ∀i = 1, · · · , N,

for some positive constant K7, T ≥ 2 and N ≥ 2.

Theorem 3 shows that after time T , the revenue gap (regret) between making pricing at pit and making

pricing at pi∗t is at most NK7T
1
2 , which is also contingent on the number of firms. The revenue differences

have a worse bound than those obtained based on the regret of a single firm. There are two major underlying
reasons for this. First, the Taylor expansion of the revenue functions is different in the analysis of these two
cases. In this case, the Taylor expansion allows the revenue function to be approximated at pi∗t which is the
optimal pricing at time t, when the price of other firms p−i

t is fixed. The regret bound can be expressed
as 1

2∇2ri(pi∗t , p−i
t )|pi∗t − pit|2 while the revenue difference bound is 1

2∇2ri(pi∗t , p−i∗
t )‖p∗ − pt‖2. Hence, the

difference between convergence rates of pt to pi∗t and p∗ to pt causes the results to differ. Second, the revenue
used to compute a revenue difference with the algorithm relies on the revenue obtained at a clairvoyant GNE
p∗. The revenue used to compute regret is the revenue obtained at pi∗t which is the true revenue maximizer
at time t. The optimal pricing pi∗t is virtual and is therefore not useful in capturing sales information. Thus,
firm i cannot predict the subsequent pricing of other firms and, moreover, the convergence of pt to pi∗t is
unrelated to the convergence of p−i

t to p−i∗
t . In fact, when pi∗t no longer changes, it means that pi∗t becomes

a fixed point of the best response function, zi, indicating that pricing decisions have reached the clairvoyant
GNE p∗.

Proof (Proof of Theorem 3). Fix a time horizon T , and firm i, and let k = inf

{

h ≥ 1 : (N + 1)
h
∑

i=1

In ≥ T

}

.

The regret after T periods is given by

Ri = E

[

T
∑

t=1

[

ri(pi∗t , p−i
t )− ri(pit, p

−i
t )
]

]

.

Note that price set by other firms p−i
t is not changable in the definition of regret. Let the revenue function

ri(pit, p
−i
t ) be approximated at pi∗t ; hence,

ri(pi, p−i) = ri(pi∗t , p−i
t ) +∇piri(pi∗t , p−i

t )(pi∗t − pit) +
1

2
∇2

piri(pi∗, p
−i
t )(pi∗t − pit)

2

= ri(pi∗t , p−i
t ) +

1

2
∇2

piri(pi∗, p
−i
t )(pi∗t − pit)

2.

Since pi∗t is the optimal solution at time t, the term ∇piri(pi∗t , p−i
t ) is equal to zero. It should be emphasized

that pi∗t is the fixed point of zi
(

ᾰ(pi∗t , p−i
t ), β̆(pi∗t , p−i

t )
)

since p̂−i
t is considered fixed. According to Lemma 1,
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we have

pi∗t = − λi(pi∗t , p−i
t )

∇piλi(pi∗t , p−i
t )

=

ᾰ(pi∗t , p−i
t ) +

N
∑

j,j 6=i

β̆ij(pi∗t , p̂−i
t )pjt

2β̆ii(pi∗t , p−i
t )

where ᾰ(pi∗t , p−i
t ) = λi(pi∗t , p−i

t ) +∇piλi(pi∗t , p−i
t )pi∗t −

N
∑

j,j 6=i

∇pjλi(pi∗t , p−i
t )pjt , β̆

ij(pi∗t , p−i
t ) = ∇pjλi(pi∗t , p−i

t )

and β̆ii(pi∗t , p−i
t ) = ∇piλi(pi∗t , p−i

t ). We divide the price experimentation in Step 1 into three parts and analyze
the regret separately. First, in the first In periods, there is no adjustment of price. For t = tn+1, · · · , tn+In,
we have that pt = p̂n; thus

∣

∣pi∗t − pit
∣

∣ =
∣

∣

∣zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

α̂(p̂n), β̂(p̂n)
)

∣

∣

∣

=
∣

∣

∣pi∗t − zi
(

ᾰ(p̂n), β̆(p̂n)
)

∣

∣

∣+ Ci
n = Ci

n, (12)

where Ci
n can be derived from (19). Second, in the periods when the firm i has changed its price, the

optimal price is the same as the previous one, as competitors do not change their strategies. For all t =
tn + iIn + 1, · · · , tn + (i+ 1)In, we have that pt = (p̂in + δn, p̂

−i
n ). Similar arguments show

∣

∣pi∗t − pit
∣

∣ =
∣

∣

∣zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

α̂(p̂in, p̂
−i
n ), β̂(p̂in, p̂

−i
n )
)

− δn

∣

∣

∣ = Ci
n + δn. (13)

Third, there are the periods when the other firms, except firm i, change their prices. Suppose that firm j
has also adjusted its price, for all t = tn + jIn +1, · · · , tn + (j +1)In, we have that pt = (p̂jn + δn, p̂

−j
n ), and

it follows that

∣

∣pi∗t − pit
∣

∣ =
∣

∣

∣zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

α̂(p̂n), β̂(p̂n)
)

∣

∣

∣

=
∣

∣

∣
zi
(

ᾰ(pi∗t , p̂−i\j
n , p̂jn + δn), β̆(p

i∗
t , p̂−i\j

n , p̂jn + δn)
)

− zi
(

α̂(p̂n), β̂(p̂n)
)

∣

∣

∣

=
∣

∣

∣zipjδn + zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

α̂(p̂n), β̂(p̂n)
)

∣

∣

∣

=
∣

∣

∣
zipjδn + pi∗t − zi

(

ᾰ(p̂n), β̆(p̂n)
)

∣

∣

∣
+ Ci

n = Ci
n +K44δn, ∀j. (14)

As discussed in the proof of Theorem 1, value of Ci
n is divisible into two situations: good and bad. However,

there is no need to consider the possibility of a good event for all firms since the prices p−i
t cannot change.

The optimal pricing pi∗t cannot be used to capture sales information,opportunity to predict the optimal
pricing of other firms. Combining the results of (12)-(14) gives the following:

E

[

∥

∥pi∗t − p̂it
∥

∥

2
]

=
∣

∣

∣
zi
(

ᾰ(pi∗t , p̂−i
t ), β̆(pi∗t , p̂−i

t )
)

− zi
(

α̂(pt), β̂(pt)
)

∣

∣

∣

2

= NK45I
− 1

2
n .
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Fixed a time horizon T and considering i, while letting k = inf

{

h ≥ 1 : (N + 1)
h
∑

i=1

In ≥ T

}

, and satisfy

logv

(

v−1
(N+1)I0v

T + 1
)

≤ k < logv

(

v−1
(N+1)I0v

T + 1
)

+ 1, we obtain that

Ri ≤ E

[

T
∑

t=1

(

[

ri(pi∗n , p̂−i
n )− ri(p̂in, p̂

−i
n )
]

+
[

ri(pi∗n , p̂−i
n )− ri(p̂in, p̂

1
n + δn, p̂

−i,−i6=1
n )

]

+ · · ·+
[

ri(pi∗n , p̂−i
n )− ri(p̂in, p̂

N
n + δn, p̂

−i,−i6=N
n )

]

)

In

]

≤ K46

k
∑

n=1

(

(N + 1)E
∥

∥pi∗n , p̂−i
n

∥

∥

2
+Nδ2n

)

In

≤ NK7T
1
2 .

4 Partially-Clairvoyant Model and Results

Given the results above, a question arises as to whether the regret and difference bounds still hold when
some firms have knowledge of the underlying demand curves λi(·) and the distributions of demand shocks
εi.

[8] considered a linear model in which decision makers ignore the impact of competitors, that is, the
flawed model αi − βiipi in which the prices of the other firms do not appear in an estimated demand curve.
An important property in their work is the demand consistency property. They considered a limit point p̃
which is the clairvoyant GNE and assumed that all firms use these flawed estimated demand curves. The
estimated demand and the expected demand at p̃ are equal, that is, αi − βip̃i∗ = E[Di(p̃)]. However, using
this kind of flawed model may lead the firms to converge to some potential limit points that are not Nash
equilibria. Thus, the flawed estimated demand curves cannot be used directly for our purpose.

Suppose that N ′ firms do not know the demand curve. We thus define the partially-flawed estimated
demand curves under the partially-clairvoyant model for the firms without the knowledge of underlying
demand curves as

αi − βiipi +

N ′

∑

j=1,j 6=i

βijpj ,

in which the effects of the firms with the knowledge of underlying demand curves do not appear in this model.
We justify the choice of such partially-flawed estimated demand curves in the following. If the firms without
the knowledge of demand curves use the full estimated demand curves, the number of price combinations in
one stage should be (N +1) to determine the values of N +1 unknown parameters. However, the clairvoyant
firms have no need to estimate the demand curves and are not motivated to attend the price experimentation
which may lead to lower revenues for them. The price experimentation can only consist of (N ′ + 1) prices
combinations. If the firms without the knowledge of demand curves considered the full estimated demand
curves while the clairvoyant firms do not attend the price experimentation, the result of experimentation
would be under-determined equations and might result in inaccurate parameters estimation. In addition,
in order to ensure the convergence of the parameters, we also require the firms without the knowledge of
underlying demand curves to adjust their prices (by adding δn) and set equilibrium prices synchronously.

N ′ firms accept the mechanism to perform price experimentation. The modified Step 1 in DDEP dictates
that price experimentation now only involves N ′ firms while Step 3 remains the same. The index k represents
the firms with known demand, k = N ′ + 1, · · · , N . In each iteration, N ′ firms keep learning the demand
function and N firms compute the equilibrium simultaneously. The modified DDEP procedure is given as
follows:
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– Step 0. Preparation: If n = 0, input I0, v, and p̂i1, ∀i = 1, · · · , N ′, ∀k = N ′ + 1, · · · , N . If n > 0, set

In = ⌊I0vn⌋ and δn = I
− 1

4
n .

– Step 1. Setting prices: Firm k’s pricing pkt , for k = N ′ + 1, · · · , N , is:

pkt = p̂kn ∀t = tn + 1, · · · , tn + (N ′ + 1)In.

Loop m from 1 to N ′ + 1. The rule of firm i’s pricing pit at time t is :

if m 6= i,
pit = p̂in, ∀t = tn + 1, · · · , tn + iIn, tn + (i+ 1)In + 1, · · · , tn + (N ′ + 1)In,
if m = i,
pit = p̂in + δn, ∀t = tn + iIn + 1, · · · , tn + (i+ 1)In.

End the m-loop. Set tn+1 = tn + (N ′ + 1)In.
– Step 2. Estimating:

(

α̂i
n+1, β̂

ij
n+1

)

= arg min
αi,βij











t=tn+(N ′+1)In
∑

t=tn+1



Di
t −



αi − βiipit +

N ′

∑

j=1,j 6=i

βijpjt









2










.

– Step 3. Computing the equilibrium: We define the optimization problem for firm i as follows:

max
pi

rin+1 ≡ max
pi

Gn+1

{

pi, p−i, α̂i
n+1, β̂

ij
n+1

}

where Gn+1

{

pi, p−i, α̂i
n+1, β̂

i
n+1

}

≡







pin



α̂i
n+1 − β̂ii

n+1p
i
n +

N ′

∑

j=1,j 6=i

β̂ij
n+1p

j
n





∣

∣

∣

∣

∣

∣

α̂i
n+1 − β̂ii

n+1p
i
n +

N ′

∑

j=1,j 6=i

β̂ij
n+1p

j
n ≥ 0, pi ∈ P i







.

Solve the following two systems simultaneously:



 α̂i
n+1 − 2β̂ii

n+1p
i +

N ′

∑

j,j 6=i

β̂ij
n+1p

j



+ µi,1
[

−β̂i
n+1

]

− µi,2 + µi,3 = 0, ∀i,

µi,1 ≥ 0, µi,1 ·
(

−α̂i
n+1 + β̂ii

n+1p
i −

N ′

∑

j,j 6=i

β̂ij
n+1p

j

)

= 0, ∀i,

−α̂i
n+1 + β̂ii

n+1p
i
n −

N ′

∑

j,j 6=i

β̂ij
n+1p

j ≤ 0, ∀i,

µi,2 ≥ 0, µi,2 ·
(

pi − pi,h
)

= 0, pi − pi,h ≤ 0 ∀i,
µi,3 ≥ 0, µi,3 ·

(

pi,l − pi
)

= 0, pi,l − pi ≤ 0 ∀i,

(15)

and
[λk(p) + pk∇pkλk(p) + E(εk) ] + µk,1[∇pkλk(p) ]− µk,2 + µk,3 = 0 ∀k,

µk,1 ≥ 0, µk,1 ·
(

−λk(p)− E(εk)
)

= 0,−λk(p) − E(εk) ≤ 0, ∀k,
µk,2 ≥ 0, µk,2 ·

(

pk − pk,h
)

= 0, pk − pk,h ≤ 0 ∀k,
µk,3 ≥ 0, µk,3 ·

(

pk,l − pk
)

= 0, pk,l − pk ≤ 0 ∀k.

(16)

Then, the prices for each firm p̂in+1 and p̂kn+1 are set to the unique solution of the above simultaneous
equations (15) and (16). Set n := n+ 1 and return to Step 0.
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4.1 Analyses

In the above algorithm, the linear model is different from that described in Section 2. We adjust it
according to the number of firms participating in price experimentation. The mechanism requires that firms
with knowledge of the demand functions modify prices simultaneously; this is important for those firms
lacking knowledge of the demand functions. There are other major changes in Step 3, although the equilibrium
price is calculated simultaneously. The prices of the clairvoyant firms would have no influence on the pricing
decisions of the firms without knowledge of the demand functions while the latter’s pricing decisions affect
the former’s. Similar to Lemma 1, we show that the linear function

αi − βiipi +

N ′

∑

j=1,j 6=i

βijpj

is sufficient for our learning. An analogy of Lemma 1 in this partially-clairvoyant setting is as follows:

Lemma 2. Suppose that εit = 0, ∀i = 1, · · · , N ′ and t, and that the sequence {p̂n} generated by DDEP

converges to a limit point p̃, which satisfies p̃i = − λi(p̃)

∇p̃iλi(p̃)
. Then, p̃ is exactly p∗.

Proof. Similar to the proof of Lemma 1, we apply simple variation in this scenario. The proof only focuses
on the case where εi = 0. Parameters β̂ii

n+1 and β̂ij
n+1 can be derived in the same way; however, α̂i

n+1 has
changed. It therefore follows that

α̂i
n+1 = λi(p̂n) + β̂ii

n+1p̂
i
n −

N ′

∑

j,j 6=i

β̂ij
n+1p̂

j
n, ∀i, j = 1, · · · , N ′, (17)

p̂in+1 =

α̂i
n+1 +

N ′

∑

j 6=i

β̂ij
n+1

2β̂ii
n+1

, ∀i, j = 1, · · · , N ′. (18)

As shown, p̂n+1 remains the same. The rest of the proof is same as that of Lemma 1.

Let us briefly explore the characteristics of the flawed linear model in [8]. Unlike our previous linear model
in Section 2, the impact of prices representing other competitors will not be fully expressed as the impact
of firms with known demand functions is omitted. At stage n, firm i, i = 1, ..., N ′ needs to participate in a
price experimentation to learn the demand function, while firm k, k = N ′ + 1, ·, N does not need to. This
means that the parameters βik cannot be estimated correctly. For firm i, totally unaware of firm k’s price,
the demand response from firm k is captured by the parameter αi. Firm k has a known demand function
and is still very sensitive to price changes by competitors. To better distinguish our models from the flawed

model of [8], we define the partially-flawed estimated demand curve as αi−βiipi+
N ′

∑

j,j 6=i

βijpj . From the best

response function perspective, p̂in+1 is set by

argmax pi



α̂i
n+1 − β̂ii

n+1p
i +

N ′

∑

j,j 6=i

β̂ij
n+1p̂

j
n+1





at the end of stage n. Compared with the previous arguments in Section 3.1, the main difference is the
parameter α̂i

n+1 in both models. Hence, during the estimation cycle, an obvious result can be used to

describe the difference between them, namely
N
∑

k=N ′+1

∇pkλi(p)pk. Therefore, as the previous convergence
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result naturally applies to this model, we turn our attention to regret analysis. To demonstrate the influence
of the firms with knowledge of the underlying demand functions, we show the following results.

Theorem 4

Under the previously stated assumptions, suppose N ′ firms do not know the underlying demand
function, the sequence of the GNE {pt : t ≥ 1} converges to p∗, and satisfies

E

[

T
∑

t=1

[

ri(pi∗t , p−i∗
t )− ri(pit, p

−i
t )
]

]

≤ N ′2K8T
1
2 , ∀i = 1, · · · , N ′,

for some positive constant K8, T ≥ 2 and N ≥ 2, 1 ≤ N ′ ≤ N .

The aggregate difference over T periods between the revenues ri(p
i∗
t , p−i∗

t ) and ri(p
i
t, p

−i
t ) is at most

N ′2K8T
1
2 . Comparing this to the results contained in Theorem 2, one apparent difference is that N2 changes

intoN ′2, which implies that the revenue difference is dependent on the number of the firms without knowledge
of the demand curve. The upper bound of this difference is applicable to any firms, including those that do
and do not know the underlying demand function. It stands to reason that if one firm does not know the
demand function, it must expend effort to learn the demand function and so the equilibrium will gradually
converge to the clairvoyant GNE p∗. If one firm does not reach the GNE p∗, there is no way for all firms to
stabilize pricing. Similar to the results in Theorem 3, we derive a further theorem.

Theorem 5

Under the previously stated assumptions, the sequence of optimal decisions
{

pi∗t : t ≥ 1
}

of the firms
who do not know the demand curve satisfies

E

[

T
∑

t=1

[

ri(pi∗t , p−i
t )− ri(pit, p

−i
t )
]

]

≤ N ′K9T
1
2 , ∀i = 1, · · · , N ′,

for some positive constant K9, T ≥ 2 and N ≥ 2, 1 ≤ N ′ ≤ N .
The sequence of optimal decisions

{

pi∗t : t ≥ 1
}

of the firms who know the demand curve satisfies

E

[

T
∑

t=1

[

ri(pi∗t , p−i
t )− ri(pit, p

−i
t )
]

]

≤ K10T
1
2 , ∀i = N ′ + 1, · · · , N,

for some positive constant K10, T ≥ 2 and N ≥ 2, 1 ≤ N ′ ≤ N .

It should be emphasized that the two kinds of firms have different regret bounds as shown in Theorem 5.
The price decisions of the clairvoyant firms always follows the best responses according to the true demand
curves, and there is no estimation error to affect the pricing decisions. However, their pricing decisions cannot
affect firms without knowledge of the demand curves. Theorem 5 shows that the upper bound on the regret
for firms without knowledge of the demand curves is still associated with the number of those firms while
the upper bound on the regret for the clairvoyant firms is not.
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5 Numerical Experiments

We examine the performance of the DDEP algorithm and present the numerical results related to regret.
We assume that the underlying demand curve is multinomial logit:

expα
i−βipi

1 +
N
∑

i=1

expαi−βipi

, αi ∈ [αi, ᾱi], βi ∈ [βi, β̄i],

where [αi, ᾱi] = [3, 4] and [βi, β̄i] = [0.4, 0.5] for each firm i = 1, · · · , N . The random error of εit is assumed

to follow a normal distribution with mean 0 and variance σ2. Owing to the properties of the multinomial
logit model, each firms demand does not exceed 1. Moreover, as the number of firms increases, setting the
standard deviation at a fixed value will lead to unrealistic experimental settings. Hence, we set the standard
deviation as the ratio (κ) of the average demand (λ̄) of all firms, i.e., σ = κ · λ̄, and it will vary with the
number of firms participating in price experimentation.

For the above specifications, we randomly select 100 combinations of the parameters αi and βi under
the uniform distributions for each firm i, i = 1, · · · , N . Each combination provides the parameters for the
underlying demand curve of all firms. In all experiments, we set an initial batch size I0 = N + 1 and
price interval P i = [pi,l, pi,h] = [0, 6]. The initial price p̂i1 is also randomly selected from P i, for each firm
i = 1, · · · , N . To present the result of the convergence of regret, for each period we compute the fraction of
optimal revenue as follows:

T
∑

t=1
pitD

i
t

T
∑

t=1
pi∗t λi(pi∗t , p−i

t )

.

We test the performance of DDEP with different numbers of firms (N = 2, 3, 4, 5) and the value of v is set
at 2. Table 1 summarizes the results for the convergence of regret.

Table 1. The performance of DDEP in terms of the fraction of optimal revenue

Period (κ = 5%) Period (κ = 10%) Period (κ = 15%)

N=2 100 1000 10000 100 1000 10000 100 1000 10000

firm 1 0.9442 0.9905 0.9978 0.9005 0.9718 0.9925 0.7975 0.9289 0.9814
firm 2 0.9419 0.9891 0.9974 0.9159 0.9765 0.9926 0.8130 0.9410 0.9815

N=3 100 1000 10000 100 1000 10000 100 1000 10000

firm 1 0.8941 0.9880 0.9929 0.8527 0.9563 0.9885 0.7957 0.9103 0.9740
firm 2 0.8995 0.9832 0.9973 0.8497 0.9671 0.9877 0.8023 0.9007 0.9818
firm 3 0.8964 0.9727 0.9948 0.8600 0.9412 0.9856 0.8018 0.9091 0.9796

N=4 100 1000 10000 100 1000 10000 100 1000 10000

firm 1 0.8489 0.9703 0.9948 0.8279 0.9354 0.9874 0.8004 0.9134 0.9779
firm 2 0.8878 0.9779 0.9957 0.8144 0.9444 0.9900 0.7893 0.9003 0.9727
firm 3 0.8824 0.9733 0.9957 0.8324 0.9431 0.9887 0.7812 0.9072 0.9751
firm 4 0.8562 0.9701 0.9952 0.8129 0.9453 0.9888 0.8049 0.9054 0.9745

N=5 100 1000 10000 100 1000 10000 100 1000 10000

firm 1 0.8284 0.9618 0.9939 0.7978 0.9179 0.9824 0.8032 0.8805 0.9600
firm 2 0.8491 0.9631 0.9938 0.7855 0.9151 0.9816 0.8094 0.8783 0.9551
firm 3 0.8527 0.9616 0.9936 0.8009 0.9211 0.9840 0.7956 0.8587 0.9650
firm 4 0.8179 0.9542 0.9928 0.7985 0.9179 0.9828 0.8186 0.8964 0.9647
firm 5 0.8386 0.9623 0.9936 0.8053 0.9116 0.9835 0.7826 0.8799 0.9624

In Table 1, as the number of firms increases, the fraction of the optimal revenues grows significantly.
Additionally, as the demand shocks become larger, the fraction is reduced.
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For the partially-clairvoyant model, we let I0 = N ′ + 1 to test the performance of the modified DDEP
with different numbers of firms (N = 3, 4, 5).

Table 2. The performance of the modified DDEP in terms of the fraction of optimal revenue

Period (κ = 5%) Period (κ = 10%) Period (κ = 15%)

N=3, N ′ = 2 100 1000 10000 100 1000 10000 100 1000 10000

firm 1∗ 0.9655 0.9964 0.9996 0.9676 0.9970 0.9996 0.9593 0.9954 0.9997
firm 2 0.9229 0.9862 0.9971 0.9164 0.9732 0.9938 0.8775 0.9495 0.9867
firm 3 0.9421 0.9885 0.9971 0.9159 0.9762 0.9941 0.9014 0.9596 0.9881

N=4, N ′ = 3 100 1000 10000 100 1000 10000 100 1000 10000

firm 1∗ 0.9412 0.9943 0.9994 0.9317 0.9932 0.9993 0.9267 0.9910 0.9989
firm 2 0.9044 0.9826 0.9966 0.8848 0.9654 0.9926 0.8170 0.9318 0.9837
firm 3 0.8997 0.9811 0.9964 0.8657 0.9693 0.9928 0.8264 0.9452 0.9839
firm 4 0.8889 0.9801 0.9962 0.8671 0.9614 0.9918 0.8201 0.9180 0.9832

N=4, N ′ = 2 100 1000 10000 100 1000 10000 100 1000 10000

firm 1∗ 0.9637 0.9964 0.9996 0.9546 0.9955 0.9994 0.9640 0.9967 0.9997
firm 2∗ 0.9704 0.9970 0.9997 0.9643 0.9961 0.9996 0.9595 0.9957 0.9995
firm 3 0.9263 0.9849 0.9966 0.9042 0.9729 0.9933 0.8547 0.9621 0.9885
firm 4 0.9388 0.9865 0.9969 0.9175 0.9695 0.9924 0.8737 0.9553 0.9868

N=5, N ′ = 4 100 1000 10000 100 1000 10000 100 1000 10000

firm 1∗ 0.9138 0.9912 0.9992 0.9017 0.9906 0.9990 0.8674 0.9879 0.9987
firm 2 0.8568 0.9705 0.9948 0.8233 0.9485 0.9890 0.8044 0.9302 0.9803
firm 3 0.8539 0.9703 0.9949 0.8542 0.9603 0.9909 0.8224 0.9212 0.9781
firm 4 0.8643 0.9713 0.9950 0.8401 0.9590 0.9918 0.7576 0.9189 0.9779
firm 5 0.8816 0.9731 0.9954 0.8362 0.9590 0.9920 0.7923 0.9217 0.9781

N=5, N ′ = 3 100 1000 10000 100 1000 10000 100 1000 10000

firm 1∗ 0.9402 0.9940 0.9993 0.9252 0.9921 0.9993 0.9285 0.9929 0.9992
firm 2∗ 0.9318 0.9931 0.9993 0.9270 0.9923 0.9991 0.9294 0.9932 0.9993
firm 3 0.8999 0.9805 0.9960 0.8642 0.9616 0.9920 0.8401 0.9382 0.9844
firm 4 0.8730 0.9752 0.9955 0.8739 0.9601 0.9922 0.8238 0.9375 0.9864
firm 5 0.8852 0.9775 0.9958 0.8617 0.9589 0.9920 0.8214 0.9330 0.9829

N=5, N ′ = 2 100 1000 10000 100 1000 10000 100 1000 10000

firm 1∗ 0.9602 0.9959 0.9996 0.9662 0.9965 0.9998 0.9643 0.9971 0.9998
firm 2∗ 0.9624 0.9962 0.9996 0.9575 0.9958 0.9995 0.9627 0.9962 0.9997
firm 3∗ 0.9583 0.9955 0.9996 0.9569 0.9954 0.9994 0.9601 0.9963 0.9995
firm 4 0.9102 0.9794 0.9957 0.9075 0.9755 0.9941 0.8895 0.9530 0.9883
firm 5 0.9258 0.9837 0.9959 0.9069 0.9739 0.9930 0.8951 0.9573 0.9874

∗ indicates the firms with knowledge of the demand function.

Comparing each entry in Table 2 with the corresponding entry in Table 1, when the number of competing
firms is the same, using the modified DDEP causes the fraction of optimal revenue for firms without knowledge
of demand to increase. This verifies what we previously illustrated in Theorems 3 and 5. Since there exist some
firms with knowledge of the demand functions, fewer firms actually participate in price experimentation. As
the number of firms with knowledge of the demand functions increases, there are two significant observations:

1. The fraction of optimal revenue for firms with knowledge of the demand is not close to or equal to one.
2. The fraction of optimal revenue for firms without knowledge of the demand will increase.

Step 3 in the modified DDEP is the underlying reason for the first observation, even if the pricing of
firms with knowledge of the demand curve are passive to reprice and their pricing does not affect the pricing
of the firms without knowledge of the demand function, the firms with the knowledge of the demand curves
still price according to each firm’s respective best response function. The pricing established in Step 3 will
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be used in the next stage, while the optimal price will be changed once competitors have adjusted prices. In
the first stage, the initial price of each firm is selected randomly in the price interval, such that the optimal
price pi∗1 in the first stage may be far away from the initial price. Hence, the fraction of optimal revenue for
firms with knowledge of the demand function is neither close nor equal to one.

The reason for the second observation is that fewer parameters need to be estimated. Turning our attention
to the cases when N ′ is fixed, one pertinent observation is that the change in N exerts significant effects on
the fraction of optimal revenue. The numerical results are consistent with our analysis.

Remark. A phenomenon which appears numerically but is not theoretically guaranteed is that the fraction
of optimal revenue for firms with knowledge of the demand curve increases as the number of firms without
knowledge of the demand curve decreases. An explanation for this numerical phenomenon is that in our set-
ting, the number of firms participating in price experimentation also affects regret. For different experiments,
such as the number of companies participating in the price experimentation, the number of periods in one
stage is also different.

For example, there are 18 periods in the first stage when N ′ = 2, while there are 32 periods when N ′ = 3.
This means that when we want to compare these results, the number of finishing stages is not the same as in
the case of a fixed time interval T . The smaller the number of firms participating in price experimentation,
the more stages required before the experimentation finishes.

6 Conclusions

In this paper, we have studied a non-cooperative game among the firms each seeking to maximize revenue.
The underlying demand-price information is not known a priori for each firm and the demand response is
determined by consumers and competitors. Based on past observations, estimated demand models are used
to make pricing decisions. The equilibrium pricing algorithm is developed for such a system and is combined
with estimation and optimization cycles. The estimation cycle uses a linear regression model to estimate
the linear approximation of the underlying demand model at a previously given price. We show that this
converges to the equilibrium pricing if the algorithm is designed properly. The role of the algorithm is
to guarantee the convergence of pricing decisions. We also conduct an analysis of the convergence rate of
regret, which is unlike worst-case regret used elsewhere in the literature. Regret is defined, in our case, as a
comparison with the optimal price that the firm could make when full information is available.

We use a linear approximation to estimate the unknown demand function. We analyze the linear demand
model in two general scenarios: one being when all competing firms have unknown demand functions, the
other being when a subset of demand functions are unknown. In the first scenario, the linear demand model
captures the impact of all competitors. In the second scenario (partially clairvoyant model), only the impact
of competitors with unknown demand functions is captured. We show that the linear demand model in both
scenarios ensures that pricing decisions converge to the true equilibrium pricing as a result of the algorithm
operation cycle. The analysis and numerical results show that the regret of firms without knowledge of the
demand curve is associated with the number of such firms, while the regret of the firms with knowledge of
the demand curve is not.

Since our work focuses on the pricing decisions of firms in a competitive environment, we do not consider
limitations in market size. In the future, this aspect of could be considered jointly with pricing and inventory
management, adding additional complexity to the problem but making it more realistic.
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A Proof of Proposition 2

Proof. We first analyze the convergences of the estimated parameters. Define that

W i,1
n =

1

In

tn+In
∑

t=tn+1

εit, W i,2
n =

1

In

tn+2In
∑

t=tn+In+1

εit, · · · ,W i,m
n =

1

In

tn+mIn
∑

t=tn+(m−1)In+1

εit,

for m = 1, 2, ..., N + 1. The recursion for the decisions can be written as

p̂n+1 = z(p̂n) + Cn, with Cn = ẑ− z(p̂n),

where ẑ denotes the collection of all firms zi(α̂i
n+1, β̂

ij
n+1), which is exactly p̂n+1. To better describe the

relationship between parameter convergence and εi, we denote the estimators of the noiseless case, as in
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equations (6), (7), and (8) by β̆ii
n+1, β̆

ij
n+1 and ᾰi

n+1 respectively. Hence, we obtain that

β̂ii
n+1 = −λi(p̂in + δn, p̂

−i
n )− λi(p̂n)

δn
− 1

δn

(

W i,j
n −W i,1

n

)

= −
[

∇piλi(pt) +
1

2
∇2

piλi(p′)δn

]

− 1

δn

(

−W i,1
n +W i,j

n

)

= β̆ii(p̂in) + Ci
n,βii ,

β̂ij
n+1 =

λi(p̂jn + δn, p̂
−j
n )− λi(p̂n)

δn
− 1

δn

(

W i,j
n −W i,1

n

)

=

[

∇pjλi(pt) +
1

2
∇2

pjλi(p′)δn

]

− 1

δn

(

W i,j
n −W i,1

n

)

= β̆ij(p̂jn) + Ci
n,βij ,

where the second equality follows from Taylors theorem applied to λi
n with p′ ≡ (pi, p−i), pi ∈ [p̂in, p̂

i
n + δn]

Ci
n,βii = −1

2
∇2

pi(p′)δn − 1

δn

(

−W i,1
n +W i,j

n

)

,

Ci
n,βij =

1

2
∇2

pj (p′)δn − 1

δn

(

+W i,j
n −W i,1

n

)

.

Similarly, we can obtain that

α̂i
n+1 = λ̄i + β̂i

n+1p̄
i
n −

N
∑

j,j 6=i

β̂ij
n+1p̄

j
n

=
1

N + 1

tn+1
∑

t=tn+1

λi(pt) +
1

N + 1

(

m=N+1
∑

m=1

W i,m
n

)

− β̂i
n+1

(

p̂in +
δn
2

)

+

N
∑

j,j 6=i

β̂ij
n+1

(

p̂jn +
δn
2

)

=
1

N + 1

tn+1
∑

t=tn+1

λi(p̂n)−∇piλi(p̂n)p̂
i
n +

N
∑

j=1,j 6=i

∇pjλi(p̂n)p̂
j
n

+
1

2

N
∑

j

∇pjλi(p′′)δn −





1

2
∇piλi(p̂n)δn +

1

2

N
∑

j=1,j 6=i

∇pjλi(p̂n)δn





+
1

N + 1

(

m=N+1
∑

m=1

W i,m
n

)

+ Ci
n,βii

(

p̂in +
δn
2

)

+

N
∑

j=1,j 6=i

Ci
n,βij

(

p̂in +
δn
2

)

= ᾰi(p̂n) + Ci
n,α,

where the third equality follows from Taylors theorem applied to λi
n with p′′ ≡ (pi, p−i), where pi ∈

[p̂in, p̂
i
n + δn], we also obtain
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Ci
n,αi =

1

2

N
∑

j

∇pjλi(p′′)δn −





1

2
∇piλi(p̂n)δn +

1

2

N
∑

j=1,j 6=i

∇pj
n
λi(p̂n)δn





+
1

N + 1

(

m=N+1
∑

m=1

W i,m
n

)

+ Ci
n,βii(p̂in +

δn
2
) +

N
∑

j=1,j 6=i

Ci
n,βij (p̂in +

δn
2
).

Considering event ω of specific occurrences for random variables εit and thus W i,m
n , we define a collection of

”good events” in which the accumulated impact of noise on demand is below a given ceiling x, which may
be set later, as follows:

A
i
n =

{

ω :
∣

∣W i,m
n

∣

∣ ≤ x, m = 1, · · · , N + 1
}

, ∀i.
We define the following constants:

Ki
11 = min

pi∈Pi

∣

∣λi(p)
∣

∣ , Ki
12 = min

pi∈Pi

∣

∣∇piλi(p)
∣

∣ , Ki
13 = min

pj∈Pi

∣

∣∇pjλi(p)
∣

∣ ∀i, j

Ki
14 = max

pi∈Pi

∣

∣∇piλi(p)
∣

∣ , Ki
15 = max

pj∈Pi

∣

∣∇pjλi(p)
∣

∣ , ∀i, j, and

Ki
16 = max

pi∈Pi

∣

∣

∣∇2
piλi(p)

∣

∣

∣ , Ki
17 = max

pj∈Pi

∣

∣

∣∇2
pjλi(p)

∣

∣

∣ , ∀i, j.

Let Γ i,1
n = 1

2K
i
16δn + 2xδ−1

n , Γ j,1
n = 1

2K
i
17δn + 2xδ−1

n and Γ i,2
n = 1

2K
i
14δn +

N
∑

j=1,j 6=i

1
2K

i
15δn + xδ−1

n +

Γ i,1
n

(

p̂i,hn + δn
2

)

+
N
∑

j=1,j 6=i

Γ j,1
n

(

p̂j,hn + δn
2

)

be the upper bound of Ci
n,βii , Ci

n,βij and Ci
n,αi . As n increases, Γ i,1

n ,

Γ j,1
n and Γ i,2

n converge to zero. This dictates that the upper bound of the difference between ᾰi and α̂i
n, β̆

ii

and β̂ii
n , β̆

ij and β̂ij
n will converge to zero when n grows. Hence, we suppose that the upper bound of this dif-

ference will converge to zero at some point. Let n0 = min
{

n ≥ 0 : Γ i,1
n <

Ki
12

2 , Γ j,1
n <

Ki
13

2 and Γ i,2
n <

Ki
11

2

}

.

For n ≥ n0 and ω ∈ A i
n,
∣

∣

∣Ci
n,βii

∣

∣

∣ <
Ki

12

2 ,
∣

∣

∣Ci
n,βij

∣

∣

∣ <
Ki

13

2 and
∣

∣

∣Ci
n,αi

∣

∣

∣ <
Ki

11

2 . Based on the previous assumption

about zi, we obtain

Ci
n = zi

(

ᾰi(p̂in) + Ci
n,αi , β̆ii(p̂in) + Ci

n,βii , β̆ij(p̂in) + Ci
n,βij

)

− zi
(

ᾰi(p̂in), β̆
ii(p̂in), β̆

ij(p̂in)
)

= ziαi

(

ai,1n , · · · , ai,Nn
)

Ci
n,αi + ziβii

(

ai,1n , · · · , ai,Nn
)

Ci
n,βii +

N
∑

j=1,j 6=i

ziβij

(

ai,1n , · · · , ai,Nn
)

Ci
n,βij ,

for some
(

ai,1n , · · · , ai,Nn
)

on the line segment joining
(

ᾰi(p̂in), β̆
ii(p̂in), β̆

ij(p̂in)
)

to
(

ᾰi(p̂in) + Ci
n,αi , β̆ii(p̂in) + Ci

n,βii , β̆ij(p̂in) + Ci
n,βij

)

. For some positive Ki
18, with a probability lower bond in

terms of x
∣

∣Ci
n

∣

∣ ≤ NKi
18

[

δn +
x

δn

]

, (19)

Thus, by taking the norm of the recursive decision function with a probability lower bound in terms of x, as
set out in Proposition 3, we obtain

‖p̂n+1 − z(p̂n)‖ ≤ ‖Cn‖, (20)

where Cn =
[

C1
n C2

n · · · CN
n

]T
, and Ci

n can be set at NKi
18

[

δn + x
δn

]

according to (19).
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B Proof of Proposition 3

Proof. To start our analysis, we first analyse the probability for a firm obtaining “good” estimators. According
to the definition of the difference Ci

n,βij and the Hoeffding inequality, to measure the effectiveness of β̂i
n+1,

we have the following bound:

P

{

∣

∣

∣β̂ii
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣ ≤ Ki
19

(

δn +
x

δn

)}

≥ 1− 4e−2Inx
2

, ∀i. (21)

A similar argument shows that

P

{

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n)
∣

∣

∣ ≤ Kj
19

(

δn +
x

δn

)}

≥ 1− 4e−2Inx
2

, ∀j. (22)

By the definition of the difference Ci
n,αi , we obtain

P

{

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣ ≤ K20N

(

δn +
x

δn
+ x

)}

≥P

{

∣

∣

∣
−W i,i

n+1 +W i,1
n+1

∣

∣

∣
≤ 2x, · · · ,

∣

∣

∣
W i,N+1

n+1 −W j,1
n+1

∣

∣

∣
≤ 2x,

∣

∣

∣

∣

∣

N+1
∑

m=1

W i,m
n+1

∣

∣

∣

∣

∣

≤ 2x

}

≥1− 8Ne−2Inx
2

, ∀i. (23)

We also have

P

{

∣

∣

∣β̂ii
n+1 − β̆ii

n+1(p̂
i
n + δn)

∣

∣

∣ ≤ Ki
21

(

δn +
x

δn

)}

≥ 1− 4e−2Inx
2

, ∀i. (24)

P

{

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣ ≤ Kj
21

(

δn +
x

δn

)}

≥ 1− 4e−2Inx
2

, ∀i, and (25)

P

{

∣

∣α̂i
n+1 − ᾰi

n+1 (p̂n +∆n)
∣

∣ ≤ NK22

(

δn +
x

δn
+ x

)}

≥ 1− 8Ne−2Inx
2

, ∀i, (26)

where p̂n +∆n denotes the price when some firm changes their price to p̂in + δn in price experimentation.
Taking the intersection of the inequalities above, we obtain

P

{

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣ ≤ NK20

(

δn +
x

δn
+ x

)

,
∣

∣

∣β̂i1
n+1 − β̆i1

n+1(p̂
1
n)
∣

∣

∣ ≤ K1
19

(

δn +
x

δn

)

· · ·
∣

∣

∣β̂iN
n+1 − β̆iN

n+1(p̂
N
n )
∣

∣

∣ ≤ KN
19

(

δn +
x

δn

)

,
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣ ≤ K22

(

δn +
x

δn
+ x

)

,

∣

∣

∣β̂i1
n+1 − β̆i1

n+1(p̂
1
n + δn)

∣

∣

∣ ≤ K1
21

(

δn +
x

δn

)

· · ·
∣

∣

∣β̂iN
n+1 − β̆iN

n+1(p̂
N
n + δn)

∣

∣

∣ ≤ KN
21

(

δn +
x

δn

)

}

≥ 1− 24Ne−2Inx
2

, ∀i. (27)

As the quantities on both sides of probability event in (21) - (23) are nonnegative, (21) - (23) imply that

P

{

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
i
n)
∣

∣

∣

2

≤ Ki
23

(

δ2n +
x2

δ2n

)}

≥ 1− 4e−2Inx
2

, ∀i, j, and (28)
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P

{

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣

2 ≤ NK24

(

δ2n +
x2

δ2n
+ x2

)}

≥ 1− 8Ne−2Inx
2

, ∀i. (29)

Similar implications of (24) - (26) are

P

{

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

2

≤ Kj
25

(

δ2n +
x2

δ2n

)}

≥ 1− 4e−2Inx
2

, ∀i, j and (30)

P

{

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

2 ≤ NK26

(

δ2n +
x2

δ2n
+ x2

)}

≥ 1− 8Ne−2Inx
2

, ∀i. (31)

Combining (28) - (31), we obtain

P

{

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣

2
+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣

2

+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

2

+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

2

≤ K27N

(

δ2n +
x2

δ2n
+ x2

)

}

≥ 1− 24Ne−2Inx
2

, ∀i, (32)

which is equivalently rewritten as

P

{

(

NK28

δ2n
+NK29

)−1(
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣

2
+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣

2

+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

2

+
N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

2

−NK27δ
2
n

)

≥ x2

}

< 24Ne−2Inx
2

, ∀i. (33)

Let x = σ(2 log(In))
1
2 I

− 1
2

n , we integrate both sides to obtain

E

[

(

NK28

δ2n
+NK29

)−1
(

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣

2
+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣

2

+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

2

+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

2

−NK27δ
2
n

)

]

≤
∫ +∞

0

24Ne−2Inx
2

dx =
12NK30

In
, ∀i. (34)
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Hence, we have that

E

[

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣

2
+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣

2

+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

2

+
N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

2
]

≤
(

12NK30

In
+

(

NK28

δ2n
+NK29

)−1

NK27δ
2
n

)

(

NK28

δ2n
+NK29

)

≤ NK31I
− 1

2
n , ∀i, (35)

where the first inequality is obtained by taking the constant out of the expectation, and the second inequality

is obtained by letting δ = I
− 1

4
n .

We must define a random event to represent the situation when the estimation is sufficiently good. Let

A i
n denote the event where all the estimated parameters satisfy

{

|α̂i
n+1− ᾰi| ≤ δn+x/δn+x, |β̂ij

n+1− β̆ij | ≤

δn + x/δn + x, ∀j = 1, · · · , N
}

for firm i. The probability of this event happening is shown in (27), which

can be transformed into

P
{

A
i
n

}

≥ 1− 24Ne−2Inx
2

.

Let Bn = {A i
n occurs, i = 1, · · · , N} represent the random event where all N firms obtain “good” estimation

outcomes A i
n. Let Bc

n =
{

at least one A i
n does not occur

}

.

E

[

‖p̂n − p∗‖2
]

≤E

[

‖p̂n − p∗‖2 | Bn

]

P {Bn}+ E

[

‖p̂n − p∗‖2 | B
c
n

]

P {Bc
n} .

Denote index set Mk =
{

i|A i
n occurs in the kth repeated permutation

}

to collect the indices i’s such that
A i

n occurs in the kth repeated permutation. Note that the number of index sets Mk’s is equal to 2N − 1. Let
event G Mk

n = {A i
n occurs ∀i ∈ Mk and A jc

n occurs ∀j /∈ Mk}. Thus, we obtain that

P {Bc
n} = P







2N−1
⋃

k=1

G
Mk
n







=

2N−1
∑

k=1

P
{

G
Mk
n

}

≤
N
∑

1

P
{

A
ic
n

}

.

Hence, we obtain

E ‖p̂n − p∗‖2 ≤E

[

‖p̂n − p∗‖2 | Bn

]

P{Bn}+
∥

∥ph − pl
∥

∥

2
N
∑

1

P
{

A
ic
n

}

.

For some suitably large positive constant K30, we can obtain the probability bound of a bad event occurring
in the estimation of the demand function, which is

P {Bn
c} ≤ 24N2e−2Inx

2 ≤ 24N2K32

In
. (36)

27



Therefore, combining the results of (35) and (36), it follows that

E
[

‖z− p̂n+1‖2
]

≤ E

[

K2
33

N
∑

i=1

(

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣+
N
∑

j=1

∣

∣

∣
β̂ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣

+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

)2
]

+
24N2K32

In

∥

∥ph − pl
∥

∥

2

≤ E

[

K34

N
∑

i=1

(

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣

2
+

N
∑

j=1

∣

∣

∣
β̂ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣

2

+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

2
+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

2
)

]

+
24N2K32

In

∥

∥ph − pl
∥

∥

2

≤ N2K1I
− 1

2
n . (37)

In the first inequality, the first term of the summation stems from rewriting the ℓ-2 norm and the second
term is a rough bound of the expectation under the event Bc

n. The second inequality is derived from (35)
for some proper constant K34. Selecting some suitable constant K1, we obtain the final inequality.

C Proof of Theorem 2

Proof. We first note that constants introduced depend on σ. Fix a time horizon T and firm i, and let k =

inf

{

h ≥ 1 : (N + 1)
h
∑

i=1

In ≥ T

}

, in which k satisfies logv

(

v−1
(N+1)I0v

T + 1
)

≤ k < logv

(

v−1
(N+1)I0v

T + 1
)

+ 1

based on the summation of a geometric sequence. The expected revenue difference after T periods is therefore
given by

Di = E

[

T
∑

t=1

[

ri(p
i∗, p−i∗)− ri(p

i
t, p

−i
t )
]

]

.

According to the assumption, the revenue function ri is a concave function on (pi,l, pi,h) and twice differen-
tiable. Applying a Taylor approximation for ri(p

i, p−i) around p∗,

ri(pi, p−i)= ri(pi∗, p−i∗) +∇ri(pi∗, p−i∗)T (p− p∗)

+
1

2
(p− p∗)T∇2ri(pi∗, p−i∗)(p− p∗).

Note that∇ri(p
i∗, p−i∗)T =

[

pi∗∇p1λi(p∗), · · · , pi∗∇piλi(p∗)+λi(p∗), · · · , pi∗∇pNλi(p∗)
]

, where pi∗∇piλi(p∗)+

λi(p∗) = 0 at the maximum revenue. Since pi∗ is a maximizer of ri(p
i∗, p−i∗),

∣

∣∇ri(p
i∗, p−i∗)

∣

∣ can be

bounded by some positive constant K35 and
1

2

∥

∥∇2ri(p
i∗, p−i∗)

∥

∥ can be bounded by some positive con-

stant K36. Notice that we cannot tell whether the term ∇ri(pi∗, p−i∗)T (p − p∗) is lesser or greater than
1

2
(p− p∗)T∇2ri(pi∗, p−i∗)(p− p∗). We have

∣

∣ri(pi, p−i)− ri(pi∗, p−i∗)
∣

∣≤ K35 |p− p∗|+K36 ‖p∗ − p‖2

≤ K37

[

|p∗ − p|+ ‖p− p∗‖2
]

,
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where K37 = max {K35,K36}. The ℓ-1 norm is used here since the term ∇ri(pi∗, p−i∗)T (p − p∗) can be a
positive or negative scalar.

It can be derived that the revenue difference of firm i for any stage n under the synchronous price control
is

[

ri (p∗)− ri(p̂n)
]

+
[

ri(p∗)− ri(p̂in + δn, p̂
−i
n )
]

+
[

ri(p∗)− ri(p̂in, p̂
1
n + δn, p̂

−i,−i6=1
n )

]

+ · · ·+
[

ri(p∗)− ri(p̂in, p̂
N
n + δn, p̂

−i,−i6=N
n )

]

=
[

ri(p∗)− ri(p̂n) + ri(p∗)− ri(p̂in + δn, p̂
−i
n ) + ri(p∗)− ri(p̂n)−

(

ri(p∗)− ri(p̂n)
)

]

+
[

ri(p∗)− ri(p̂in, p̂
1
n + δn, p̂

−i,−i6=1
n ) + ri(p∗)− ri(p̂n)−

(

ri(p∗)− ri(p̂n)
)

]

+ · · ·+
[

ri(p∗)− ri(p̂in, p̂
N
n + δn, p̂

−i,i6=N
n ) + ri(p∗)− ri(p̂)−

(

ri(p∗)− ri(p̂)
)

]

+∇ri(p∗)T (p̂n − p∗) +
1

2
(p̂n − p∗)T∇2ri(p∗)(p̂n − p∗).

For all t = tn + iIn + 1, · · · , tn + (i+ 1)In, we have pt = (p̂in + δn, p̂
−i
n ). Hence,

[

ri(p∗)− ri(p̂in + δn, p̂
−i
n )
]

=
[

ri(p∗)− ri(p̂in + δn, p̂
−i
n ) + ri(p∗)− ri(p̂n)−

(

ri(p∗)− ri(p̂n)
)

]

=
[

ri(p∗)− ri(p̂n)
]

+
[

ri(p∗)−
(

ri(p∗) +∇ri(p∗)T
(

(p̂in + δ, p̂−i
n )− p∗

)

+
1

2

(

(p̂in + δ, p̂−i
n )− p∗

)T∇2ri(p∗)
(

(p̂in + δ, p̂−i
n )− p∗

)

)

−
(

ri(p∗)− (ri(p∗
)

+∇ri(p∗)T (p̂n − p∗) +
1

2
(p̂n − p∗)T∇2ri(p∗)(p̂n − p∗)

)]

= [ri(p∗)− ri(p)] +
[

∇ri(p∗)T
(

p̂n − (p̂in + δ, p̂−i
n )
)

+
1

2

(

p̂n − (p̂in + δ, p̂−i
n )
)T∇2ri(p∗)

(

p̂n − (p̂in + δ, p̂−i
n )
)

]

= [ri(p∗)− ri(p)]− 1

2

(

(p̂in + δ, p̂−i
n )− p∗

)T∇2ri(p∗)
(

(p̂in + δ, p̂−i
n )− p∗

)

+
1

2
(p̂n − p∗)T∇2ri(p∗)(p̂n − p∗)

≤
[

ri(p∗)− ri(p)
]

+K36δ
2.

Taking Taylors expansion for ri(p̂in + δn, p̂
−i
n ) and ri(p̂n) around p∗, we obtain the first inequality. Since

∇ri(p∗)T
(

p̂n − (p̂in + δ, p̂−i
n )
)

= 0, the last equality is obtained. The terms
1

2

(

(p̂in + δ, p̂−i
n )− p∗

)T∇2ri(p∗)
(

(p̂in + δ, p̂−i
n )− p∗

)

and
1

2
(p̂n − p∗)T∇2ri(p∗)(p̂n − p∗) are bounded by−K36

∥

∥(p̂in+

δ, p̂−i
n )− p∗

∥

∥

2
and −K36

∥

∥p̂n − p∗
∥

∥

2
, respectively. Thus, we obtain the last inequality. We also have

∇ri(p∗)T
(

p̂n − (p̂jn + δ, p̂−j
n )
)

< 0. Similarly for all t = tn + jIn + 1, · · · , tn + (j + 1)In, we have pt =
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(p̂jn + δn, p̂
−j
n ) and an identical inequality.

[

ri(p∗)− ri(p̂in, p̂
j
n + δ, p̂−i,−i6=j

n ) + ri(p∗)− ri(p)−
(

ri(p∗)− ri(p)
)

]

≤
[

ri(p∗)− ri(p)
]

+K36δ
2.

Combining the results above, the revenue difference of firm i becomes

Di≤ E

[

k
∑

n=1

(

[

ri(p∗)− ri(p)
]

+
[

ri(p∗)− ri(pit + δn, p
−i
t )
]

+
[

ri(p∗)− ri(pit, p
1
t + δn, p

−i,−i6=1
t )

]

+ · · ·+
[

ri(p∗)− ri(pit, p
N
t + δn, p

−i,−i6=N
t )

]

)

In

]

≤ E

[

k
∑

n=1

(

(N + 1)(ri(p∗)− ri(p)) +Nδ2
)

In

]

≤ K37

k
∑

n=1

(

(N + 1)E ‖p̂n − p∗‖2 +Nδ2n + (N + 1)E |p̂n − p∗|
)

In, (38)

where k = inf

{

h ≥ 1 : (N + 1)
h
∑

i=1

In ≥ T

}

. The first inequality represents the revenue difference generated

during the DDEP operations. The second inequality arises as the revenue difference in each time interval In
has the same upper bound. The third inequality is derived using the Taylor approximation for ri(p) at p∗.

According to the results of Theorem 1, the upper bound of E
[

‖p̂n − p∗‖2
]

is N2K5I
− 1

2
n . Thus, we obtain

the above result. Now, we turn to finding the upper bound of E [|p̂n − p∗|]. Similar to the arguments in
Proposition 3, we change the inequalities (27) into

P

{

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣+
N
∑

j=1

∣

∣

∣
β̂ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣
+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣ ≥ K38N

(

δn +
x

δn
+ x

)

}

< 24N2e−2Inx
2

, ∀i. (39)

Note that
(

δn + x
δn

+ x
)

≤ K39x/δn and that E[X ] =
∫ +∞

0 P{X ≥ t}dt for every non-negative random

variable X . (The last equation is referred to as “tail-integral formula”.) Integrating both sides leads to

E

[

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣

+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

]

≤ δ−1
n

∫ +∞

0

Ne−2Inx
2

dx ≤ NK40I
− 3

4
n , ∀i (40)
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for some constant K40. Similar to (37), we have

E [|z− p̂n+1|]

≤ E

[

K28

N
∑

i=1

∣

∣α̂i
n+1 − ᾰi

n+1(p̂n)
∣

∣+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ii

n+1(p̂
i
n)
∣

∣

∣

+
∣

∣α̂i
n+1 − ᾰi

n+1(p̂n +∆n)
∣

∣+

N
∑

j=1

∣

∣

∣β̂
ij
n+1 − β̆ij

n+1(p̂
j
n + δn)

∣

∣

∣

]

+
24NK32

In

∥

∥ph − pl
∥

∥

≤ NK41I
− 3

4
n (41)

for some constant K41. Using (38), (40) and (41), we can derive as follows:

Di ≤ K42

k
∑

n=1

N2(N + 1)
[

I
− 1

2
n + δ2n + I

− 3
4

n

]

In

≤ K43

k
∑

n=1

N2((N + 1)In)
1
2 = N2K43

((N + 1)(I0v))
1
2

1− v
1
2

(1− v
n−1
2 − 1)

≤ N2K43
(N + 1)

1
2 (I0v)

1
2

1− v
1
2

(

v
logv(

v−1
(N+1)I0v

T+1)+1−1
)

1
2 ≤ N2K6T

1
2 ,

where K42 = max{K37,K41}. The first inequality is obtained by employing the results of (41) in (38).
Selecting some suitable constant K43, we can make the order of In consistent. The equality comes from the
summation of a geometric sequence according to the constant k defined previously. This theorem implies
that using this pricing policy, even if the underlying demand function is unknown, the difference due to
the gap between the equilibrium point obtained at each stage p̂n+1 and the clairvoyant GNE p∗ is at most
N2K6T

1
2 .

D Proof of Theorem 4

Proof. This result is derived from the proofs of Theorem 2, Lemma 2 and Theorem 1 shown previously.
Having established the price convergence when all firms are unaware of the demand functions, we now verify
whether there are similar results when some firms know the demand functions.

Suppose N − N ′ firms already know the demand function, then only N ′ firms need to estimate their
demand function. According to the proof of Lemma 2, it follows that

β̂ij
n+1 =

λi(pn; p̂
j
n + δn)− λi(pn)

δn
− 1

δn

(

W i,j
n −W i,1

n

)

=

[

∇pjλi(pt) +
1

2
∇2

pjλi(p′)δn

]

− 1

δn

(

W i,j
n −W i,1

n

)

= β̆ij
n+1 + Cij

n,βij ,

Hence, the inequality in Proposition 2 changes to

‖p∗ − z(p̂n)‖ ≤ ‖Cn‖,

where Cn ≡
[

C1
n, · · · , CN ′

n

]

. Recall that N ′ represents the number of firms who do not know the demand

function. Then, the probability in Proposition 3 (36) also changes to

P {Bn} ≥ 1− 24N ′2K32

In
.

31



Combine these two inequalities above, the convergence results of equilibrium can be obtained; that is,

E

[

‖p̂n+1 − p∗‖2
]

≤ N ′2K47I
− 1

2
n . (42)

Based on the proof of Theorem 2, similar results can be obtained:

Ri ≤ N ′2K8T
1
2 .

E Proof of Theorem 5

Proof. We first analyze the regret among firms without knowledge of the demand curve. This proof is similar
to that of Theorem 3. The major difference relates to the best response. The best response operator in the
partially clairvoyant model is zi

(

α̂(p̂t), β̂(p̂t)
)

where the inputs α̂ and β̂ are different from the inputs of the
best response operator in the full model. Fixing firm i, the parameter α̂i

n+1 in the full model is

α̂i
n+1 = λi(p̂n) + β̂ii

n+1p̂
i
n −

N
∑

j,j 6=i

β̂ij
n+1p̂

j
n,

while α̂i
n+1 in the partially-clairvoyant model is

α̂i
n+1 = λi(p̂n) + β̂ii

n+1p̂
i
n −

N ′

∑

j,j 6=i

β̂ij
n+1p̂

j
n.

The difference of α between the partially-clairvoyant model and the full model is
∑N−N ′

k=1 βik
n+1p

k
n. For all

t = tn + 1, · · · , tn + In, we have that pt = (p̂in, p̂
−i
n ). Thus,

∣

∣pi∗t − pit
∣

∣

=
∣

∣

∣zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

α̂(p̂n), β̂(p̂n)
)

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

ᾰ(p̂n), β̆(p̂n)
)

+

N−N ′
∑

k=1

β̆ik
n+1(p

k
n − pkn+1)

β̆ii
n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ ‖Cn‖

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

N−N ′
∑

k=1

β̆ik
n+1(p

k
n − pk∗ − pkn+1 + pk∗)

β̆ii
n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ ‖Cn‖

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

j=1

β̆ij
n+1(p

j
n − pj∗ − pjn+1 + pj∗)

β̆ii
n+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

+ ‖Cn‖

≤ K48 |p̂n+1 − p∗|+ ‖Ci
n‖. (43)

As pi∗t and pit are the fixed points of zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

and zi
(

α̂(p̂n), β̂(p̂n)
)

, respectively, we can

obtain the first equality.. The second equality transforms the operator zi
(

α̂(p̂n), β̂(p̂n)
)

in the flawed demand
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model into the operator in the full model. The last inequality uses the results of price convergence in the ℓ-1
norm and selects some appropriate constant K48 to cover the term (pjn − p∗ − pjn+1 + pj∗). Using a result

implied in the proof of Theorem 2, we obtain that E [|p̂n+1 − p∗|] ≤ N ′K49I
− 3

4
n . Combining the inequality

above and (43), one obtains

E

[

∥

∥pi∗t − pit
∥

∥

2
]

≤ N ′K50I
− 1

2
n .

Similar to the proof of Theorem 3, the regret bound can be obtained as follows:

Ri ≤ N ′K9T
1
2 .

We then analyze the regret of the firms with knowledge of the demand curve. The firms with the knowledge
of the demand curves do not need to adjust prices. We divide the price experimentation in Step 1 of the
modified DDEP into two parts and analyze the regret separately. First, in the first In periods, there is no
firm adjusting price. According to the proof of Theorem 3, for all t = tn + 1, · · · , tn + In, pt = (p̂in, p̂

−i
n ).

Thus,

∣

∣pi∗t − pit
∣

∣ =
∣

∣

∣
zi(ᾰ(pi∗t , p̂−i

n ), β̆(pi∗t , p̂−i
n ))− zi(ᾰ(p̂n), β̆(p̂n))

∣

∣

∣
=
∣

∣

∣
pi∗t − zi(ᾰ(p̂n), β̆(p̂n))

∣

∣

∣
= 0. (44)

Second, in periods in which firms without knowledge of the demand curves have changed their price, suppose
that firm j has adjusted its price, for all t = tn + jIn +1, · · · , tn +(j+1)In, we arrive at pt = (p̂jn + δn, p̂

−j
n )

∣

∣pi∗t − pit
∣

∣

=
∣

∣

∣zi
(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

α̂(p̂n), β̂(p̂n)
)

∣

∣

∣

=
∣

∣

∣zi
(

ᾰ(pi∗t , p̂−i\j
n , p̂jn + δn), β̆(p

i∗
t , p̂−i\j

n , p̂jn + δn)
)

− zi
(

ᾰ(p̂n), β̆(p̂n)
)

∣

∣

∣

=
∣

∣

∣zi
p̂j
n
δn + zi

(

ᾰ(pi∗t , p̂−i
n ), β̆(pi∗t , p̂−i

n )
)

− zi
(

ᾰ(p̂n), β̆(p̂n)
)

∣

∣

∣

=
∣

∣

∣
zi
p̂j
n
δn + pi∗t − zi

(

ᾰ(p̂n), β̆(p̂n)
)

∣

∣

∣
= K51δn, ∀j. (45)

In the same way,

E

[

∥

∥pi∗t − pit
∥

∥

2
]

≤ K52I
− 1

2
n .

Hence, the following regret bound is obtained.

Ri ≤ K10T
1
2 .
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