
A. Search Direction Selection

Selecting Descent Direction

Principle of gradient methods

xk+1 = xk + αkdk

xk+1 = xk − αkDk∇f(xk)

Dk ∈ Rn×n, dk ∈ Rn, and xk ∈ Rn.

The descent direction dk satisfies ∇f(xk)′dk < 0. Thus,
the matrix Dk should (always) satisfy

∇f(xk)′Dk∇f(xk) > 0,

meaning

Different choice of Dk results in different methods
introduced below.
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A. Search Direction Selection

Selecting Descent Direction

Steepest Descent — Simple, slow convergence

Newton’s Method — Sophisticate, fast convergence

Diagonally Scaled Steepest Descent — Diagonal
approximation to ∇2f(xk)−1

Modified Newton’s Method — ∇2f(x0)−1 replaces
∇2f(xk)−1,∀k
Discretized Newton’s Method — Finite-difference
based approximation to ∇2f(xk)

Gauss-Newton’s Method — for least squares
problems
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A. Search Direction Selection

Steepest Descent

Dk = I, k = 0, 1, . . . ,

where I is the n× n identity matrix, and

dk = −∇f(xk), ∀k.

This idea arises from finding a direction d that solves

min
d
dT∇fk, s.t.||d|| = 1

Since dT∇fk = ||d|| · ||∇f(xk)|| cos θ = ||∇f(xk)||cosθ,
where θ is the angle between d and ∇f(xk), it is easy to
see that the minimizer is attained when cos θ = −1 and

d =
−∇f(xk)

||∇f(xk)||
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A. Search Direction Selection

Newton’s Method

Dk = (∇2f(xk))−1

The idea in Newton’s method is to minimize at each
iteration the quadratic approximation of f around the
current point xk

min
x
f(xk) +∇f(xk)′(x− xk) +

1

2
(x−xk)′∇2f(xk)(x− xk),

Set the first derivative at 0

∇f(xk) +∇2f(xk)(x− xk) = 0
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A. Search Direction Selection

Newton’s Method

(continued)
The optimal x = xk − (∇2f(xk))−1∇f(xk) provides a
closed form expression of the next iterate xk+1

xk+1 = xk −
(
∇2f(xk)

)−1∇f(xk)

A general form is written as

xk+1 = xk − αk
(
∇2f(xk)

)−1∇f(xk)
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A. Search Direction Selection

Diagonally Scaled Steepest Descent

Dk is a digonal matrix with ith entry be dki and dki > 0

The idea is to approximate the Newton’s method by
diagonal matrix. That is,

dki ∼
(
∂2f(xk)

(∂xi)2

)−1
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A. Search Direction Selection

Modified Newton’s Method

Dk =
(
∇2f(x0)

)−1
, k = 0, 1, ...,

For Dk to be pd, ∇2f(x0) is also pd.

This method is the same as Newton’s method except that
the Hessian matrix is not recalculated at each iteration.
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A. Search Direction Selection

Discretized Newton’s Method

Dk =
(
H(xk)

)−1
, k = 0, 1, ...

where H(xk) is an approximation of ∇2f(xk) formed by
using finite difference approximation of the second
derivatives, based on first derivatives or values of f .

It is required that H(xk) is pd and symmetric.
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A. Search Direction Selection

Gauss-Newton Method

This method is applicable specifically to the following
optimization problem, often encountered in statistical
data analysis and neural network training:

min f(x) = 1
2 ||g(x)||2 = 1

2

m∑
i=1

(gi(x))2

s.t. x ∈ Rn

where g1, . . . , gm are real valued functions. We choose

Dk =
(
∇g(xk)∇g(xk)′

)−1

The matrix ∇g(xk)∇g(xk)′ is always psd.
Furthermore, if ∇g(xk) has rank n, then ∇g(xk)∇g(xk)′

is and (Proposition A.20)
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A. Search Direction Selection

Gauss-Newton Method

(continued)
The Gauss-Newton method may be viewed as an
approximation to Newton’s method. Because
∇f(xk) = ∇g(xk)g(xk), the iterate is

xk+1 = xk − αk
(
∇g(xk)∇g(xk)′

)−1∇g(xk)g(xk)
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A. Search Direction Selection

Others

There are methods with other choices of Dk, such as the
class of Quasi-Newton methods.

There are methods where the direction dk is not of the
form −Dk∇f(xk), such as conjugate gradient method and
the coordinate descent method.
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B. Stepsize Selection

Selecting Stepsize

The selection of stepsize is usually after the
determination of a search direction.

Minimization Rule — αk such that f(xk + αkdk) is
minimized

Armijo rule — Start with s and continue with βs,
β2s,..., until βms falls within the feasible set of α
satisfying
f(xk)− f(xk + βmsdk) ≥ −σβms∇f(xk)′dk.

Goldstein rule — The first successive stepsize
reduction method, more complex than the Armijo
rule.

Constant stepsize — αk = constant

Diminishing stepsize — αk → 0 and satisfying
∞∑
k=0

αk =∞

14 / 71



B. Stepsize Selection

Minimization Rule

A stepsize that minimizes the current cost function

min
α≥0

f(xk + αdk)

Or, the limited minimization rule

min
α∈[0,s]

f(xk + αdk)

The above two optimization problems are typically solved
by the one-dimensional line search algorithm.
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B. Stepsize Selection

Minimization Rule—Line Search

line search? Search along a line with the direction

Three practical methods to search along a line1:

Cubic interpolation

Quadratic interpolation

The golden section method

1Now go to the Appendix C
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B. Stepsize Selection

Minimization Rule—Line Search

(continued)
In three types of line search methods, we consider
minimization of the function

g(α) = f(x+ αd)

The shape of the function g(α), however, is not known.

Three methods are three different “guesses” about the
shape of g(α) from computable function value at a point
a, g(a), and/or the derivative g′(a) at a.
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B. Stepsize Selection

Successive Stepsize Reduction

An initial stepsize s is chosen and if the corresponding
vector xk + sdk does not yield an improved value of f , the
stepsize should be reduced.

The reduction of stepsize may repeat several times until
the value of f is reduced.

While this method often works in practice, it is
theoretically unsound because the cost improvement
obtained at each iteration may not be substantial enough
to guarantee convergence to a minimum:
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B. Stepsize Selection

Successive Stepsize Reduction
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B. Stepsize Selection

Successive Stepsize Reduction—Armijo Rule

The Armijo rule is essentially the successive reduction,
suitably modified to eliminate the theoretical convergence
difficulty as in the previous figure.

We set the stepsize αk = βmks, where mk is the first
nonnegative integer m satisfying

f(xk)− f(xk + βmsdk) ≥ −σβms∇f(xk)′dk.

And s, β ∈ (0, 1), σ ∈ (0, 1) are fixed scalars chosen by
user2.
In practice, the stepsizes βms, m = 0, 1, ..., are tried
successively until the above Armijo condition is satisfied.

2Common selection: s = 1, σ close to zero
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B. Stepsize Selection

Successive Stepsize Reduction—Armijo Rule

The Armijo rule guarantees that the cost improvement
must not just positive, but sufficiently large.
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B. Stepsize Selection

Goldstein Rule

The stepsize αk is chosen to satisfy

σ ≤ f(xk + αkdk)− f(xk)

αk∇f(xk)′dk
≤ 1− σ,

where σ ∈ (0, 1/2) is a fixed scalar.
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B. Stepsize Selection

Goldstein Rule

(continued)
In practice the simpler Armijo rule seems to be
universally preferred. The Goldstein rule is included here
primarily because of its historical significance: it was the
first sound proposal for a general-purpose stepsize rule
that did not rely on line minimization.
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B. Stepsize Selection

Constant Stepsize

αk = s,

where s > 0 is a fixed scalar for all k.
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B. Stepsize Selection

Diminishing Stepsize

In such a design, the stepsize should converge to zero and
shouldn’t be too small

αk → 0, and

∞∑
k=1

αk =∞.

This stepsize rule is different than the proceeding ones in
that it does not guarantee descent at each iteration.

The 2nd condition guarantees that {xk} does not
converge to a nonstationary point. If xk → x̄, then for
any large indexes m and n (m > n) we have

xm ≈ xn ≈ x̄, xm ≈ xn −

(
m−1∑
k=n

αk

)
∇f(x̄),
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B. Stepsize Selection

Diminishing Stepsize

(continued)
Since

∑m−1
k=n α

k can be made arbitrarily large, the above is
a contradiction when x̄ is nonstationary.(5 minutes)

The diminishing stepsize converges but the convergence
rate tends to be slow. It is used primarily in situations
where slow convergence is inevitable; for example, in
singular problems or when the gradient is calculated with
error.
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C. Convergence Issues and Analysis

Convergence to Stationary Point

Is the limit point of a sequence {xk} generated by a
gradient method a stationary point?

Only convergence to stationary points can be
guaranteed

Even convergence to a single limit may be hard to
guarantee (capture theorem)

Danger of nonconvergence if directions dk tend to be
orthogonal to ∇f(xk)

Bounded eigenvalues condition

Gradient related condition
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C. Convergence Issues and Analysis

Termination Criteria for infinite convergence

Generally, gradient methods are not finitely convergent.

To terminate the iteration:

||∇f(xk)|| ≤ ε or
||∇f(xk)||
||∇f(x0)||

≤ ε,

where ε is a small positive scalar.

It is also possible to set the termination criterion as

||dk|| ≤ ε.
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C. Convergence Issues and Analysis

Spacer Steps

In order to achieve the convergence, one inserts an
iteration of a convergent algorithm finitely often to one
another algorithm, then the theoretical convergence
properties of the overall algorithm are quite satisfactory.

Such an inserted iteration is known as a spacer step.
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C. Convergence Issues and Analysis

Gradient Methods with Random and Nonrandom Errors

Occasionally, the gradient ∇f(xk) is not computed
exactly, and what is available is a vector

gk = ∇f(xk) + ek,

where ek is an uncontrollable error vector. For example,
embedded in a steepest descent method, the iterate is

xk+1 = xk − αkgk.

Convergence results for this setting in many cases are
found analogous to those without errors.
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C. Convergence Issues and Analysis

Convergence Results

Theorem (Proposition 1.2.1: limit points for
Gradient Methods)

Let {xk} be a sequence generated by a gradient method
xk+1 = xk + αkdk, and assume that {dk} is gradient
related and αk is chosen by the minimization rule, or the
limited minimization rule, or the Armijo rule. Then every
limit point of {xk} is a stationary point.

Theorem (Proposition 1.2.2:)

The conclusions of Prop. 1.2.1 hold if {dk} is gradient
related and αk is chosen by the Goldstein rule.

31 / 71



C. Convergence Issues and Analysis

Convergence Results

Theorem (Proposition 1.2.3: constant stepsize)

Let {xk} be a sequence generated by a gradient method
xk+1 = xk + αkdk, where {dk} is gradient related. Assume
that for some constant L > 0, we have

||∇f(x)−∇f(y)|| ≤ L||x− y||,∀x, y ∈ Rn,

and that for all k we have dk 6= 0 and

ε ≤ αk ≤ (2− ε)ᾱk,

where

ᾱk =
|∇f(xk)′dk|
L||dk||2

,

and ε is a fixed positive scalar. Then every limit point of
{xk} is a stationary point of f .
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C. Convergence Issues and Analysis

Convergence Results

Theorem (Proposition 1.2.4: diminishing stepsize)

Let {xk} be a sequence generated by a gradient method
xk+1 = xk + αkdk. Assume that for some constant L > 0,
we have

||∇f(x)−∇f(y)|| ≤ L||x− y||,∀x, y ∈ Rn,

and that there exist positive scalars c1, c2 such that for all
k we have

c1||∇f(xk)||2 ≤ −∇f(xk)′dk, ||dk||2 ≤ c2||∇f(xk)||2.

Suppose also that αk → 0,
∑∞

k=0 α
k =∞. Then either

f(xk)→ −∞ or else {f(xk)} converges to a finite value
and ∇f(xk)→ 0. Furthermore, every limit point of {xk}
is a stationary point of f .
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C. Convergence Issues and Analysis

Convergence Results

Theorem (Proposition 1.2.5: [Capture Theorem]
tendency of unique limit point)

Let f be continuously differentiable and let {xk} be a sequence
satisfying f(xk+1) ≤ f(xk) for all k and generated by a gradient
method xk+1 = xk + αkdk, which is convergent in the sense that
every limit point of sequence that it generates is a stationary
point of f . Assume that there exist scalars s > 0 and c > 0
such that for all k there holds

αk ≤ s, ||dk|| ≤ c||∇f(xk)||.

Let x∗ be a local minimum of f , which is the only stationary

point of f within some open set. Then there exists an open set

S containing x∗ such that if xk̄ ∈ S for some k̄ ≥ 0, then

xk ∈ S for all k ≥ k̄ and {xk} → x∗. Furthermore, given any

scalar ε̄ > 0, the set S can be chosen so that ||x− x∗|| < ε̄ for

all x ∈ S.
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C. Convergence Issues and Analysis

Convergence Results

Theorem (Proposition 1.2.6: spacer steps)

Consider a sequence {xk} such that

f(xk+1) ≤ f(xk), k = 0, 1, . . .

Assume that there exists an infinite set K of integers for
which

xk+1 = xk + αkdk, ∀k ∈ K,

where {dk}K is gradient related and αk is chosen by the
minimization rule, or the limited minimization rule, or
the Armijo rule. Then every limit point of the
subsequence {dk}K is a stationary point.

Go to proofs.
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D. Rate of Convergence

Speed of Convergence

Three approaches can be used to quantify the rate of
convergence

1. Computational complexity approach: an upper
bound of the number of required operations

2. Informational complexity approach: the number
of function (or gradient) evaluations needed

3. Local analysis: Local analysis describes the
behavior of a method near the solution by using
Taylor series approximations, but ignores entirely the
behavior of the method when far from the solution.
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D. Rate of Convergence Local analysis

The Local Analysis Approach—Classes of convergence
rate

Principle:

Suppose that there is a unique limit point x∗ to which the

sequences {xk} converges. An error function can be either
defined as the Euclidean distance e(x) = ||x− x∗|| or the
cost difference e(x) = |f(x)− f(x∗)|.
The sequence {e(xk)} is compared with the geometric
progression

βk, k = 0, 1, ...,

where β ∈ (0, 1) is some scalar.

37 / 71



D. Rate of Convergence Local analysis

The Local Analysis Approach—Classes of convergence
rate

Linear convergence

We say that {e(xk)} converges linearly or geometrically, if
there exist q > 0 and β ∈ (0, 1) such that for all k

e(xk) ≤ qβk.

Alternatively, if for some β ∈ (0, 1) we have

lim sup
k→∞

e(xk+1)

e(xk)
≤ β.

that is, asymptotically, the error is decreasing by a factor
of at least β at each iteration, then a linear convergence is
obtained.
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D. Rate of Convergence Local analysis

The Local Analysis Approach—Classes of convergence
rate

Superlinear convergence

If for every β ∈ (0, 1), there exist q such that the
condition e(xk) ≤ qβk holds for all k, we say that {e(xk)}
converges superlinearly. If

lim sup
k→∞

e(xk+1)

e(xk)
= 0.

To quantify the notion of superlinear convergence, we
compare {e(xk)} with the sequence

βp
k
, k = 0, 1, . . . ,

where β ∈ (0, 1), and p > 1 are some scalars. We say that
{e(xk)} converges at least superlinearly with order p, if
there exist q > 0, β ∈ (0, 1), and p > 1 such that for all k

e(xk) ≤ q · βpk . 39 / 71



D. Rate of Convergence Local analysis

The Local Analysis Approach—Classes of convergence
rate

(continued) It is possible to show that superlinear
convergence with order p is obtained if

lim sup
k→∞

e(xk+1)

e(xk)p
<∞

or equivalently, e(xk+1) = O(e(xk)p).

Quadratic convergence

The case where p = 2 is referred to as quadratic
convergence.
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D. Rate of Convergence Local analysis

Convergence Rate of Steepest Descent for Quadratic
Program

Suppose that the cost function f is quadratic with
positive definite Hessian Q. WLOG, assume f is
minimized at x∗ = 0 and f(x∗) = 0 (Otherwise we can use
y = x− x∗ and subtract the constant f(x∗) from f(x).)

Thus we have

f(x) =
1

2
x′Qx,∇f(x) = Qx,∇2f(x) = Q.

Let m: smallest eigenvalue of Q, and M : largest
eigenvalue of Q.

Condition number

M

m
: condition number of Q

Problems with large M/m are referred as ill-conditioned.
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D. Rate of Convergence Local analysis

Convergence Rate of Steepest Descent for Quadratic
Program

Three convergence rate results

1. For xk 6= 0, we have

||xk+1||
||xk||

≤ max{|1− αkm|, |1− αkM |}

2. When αk is chosen by the line minimization rule, we
obtain

f(xk+1)

f(xk)
≤
(M −m
M +m

)2
.

3. The αk that minimizes the bound of the condition 1. is
α∗ = 2/(M +m), in which case

||xk+1||
||xk||

≤ M −m
M +m

as shown in the following figure.
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D. Rate of Convergence Local analysis

Convergence Rate of Steepest Descent for Quadratic
Program
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D. Rate of Convergence Local analysis

Convergence Rate of Steepest Descent for Quadratic
Program
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D. Rate of Convergence Local analysis

Convergence Rate of Steepest Descent for Quadratic
Program
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D. Rate of Convergence Local analysis

Convergence Rate of Steepest Descent for Quadratic
Program

Scaling

x = Sy. Analogous convergence results of f(y) can be
obtained.
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D. Rate of Convergence Local analysis

Nonquadratic cost function and for convergence to
nonsingular local minima

Nonquadratic cost function

Let f be twice continuously differentiable.

xk+1 = xk − αkDk∇f(xk)

Assume

xk → x∗,∇f(x∗) = 0,∇2f(x∗) : pd, and xk 6= x∗∀k.

Let mk : smallest eigenvalue of (Dk)1/2∇2f(xk)(Dk)1/2,
Mk: largest eigenvalue of (Dk)1/2∇2f(xk)(Dk)1/2.
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D. Rate of Convergence Local analysis

Nonquadratic cost function and for convergence to
nonsingular local minima

1. There holds

lim sup
k→∞

(xk+1 − x∗)′(Dk)−1(xk+1 − x∗)
(xk − x∗)′(Dk)−1(xk − x∗)

= lim sup
k→∞

max{|1− αkmk|2, |1− αkMk|2}

2. If αk is chosen by the minimization rule, there holds

lim sup
k→∞

f(xk+1)− f(x∗)

f(xk)− f(x∗)

≤ lim sup
k→∞

(
Mk −mk

Mk +mk
)2

3. When Dk → ∇2f(x∗)−1, we have

lim
k→∞

Mk = lim
k→∞

mk = 1

48 / 71



D. Rate of Convergence Local analysis

Nonquadratic cost function and for convergence to
nonsingular local minima

Guideline:

Choose the matrices Dk as close as possible to
(∇2f(x∗))−1, i.e., dk approaches asymptotically the
Newton direction, so the maximum and minimum
eigenvalues of (Dk)1/2∇2f(x∗)(Dk)1/2 satisfy Mk ≈ 1
and mk ≈ 1.

Furthermore, the initial stepsize s = 1 is a good
choice for the Armijo rule or a starting point of the
minimization rule.

Then a superlinear convergence rate is obtained

[one of the most reliable guidelines for designing
algorithms for unconstrained NLP]
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D. Rate of Convergence Local analysis

Difficult cost function and singular local minima

Singular local minimum:

Hessian matrix does not exist or not pd near or at local
minima.

Difficult cost function:

(1) flat cost function

Given local minima x∗ and direction d

lim
α→0

∇f(x∗ + αd)′d−∇f(x∗)′d

α
= 0

(2) steep cost function

lim
α→0

∇f(x∗ + αd)′d−∇f(x∗)′d

α
=∞

—both with infinite condition number, thereby slower
than linear convergence for steepest descent.
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D. Rate of Convergence Local analysis

Difficult cost function and singular local minima

Convergence result:

For flat cost function f , but not for steep cost function,
the gradient is Lipschitz continuous:

||∇f(x)−∇f(y)|| ≤ L||x− y||, for some L,

∀x, y in a neighborhood of x∗.

and there holds

f(xk)− f(x∗) = o(1/k).
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D. Rate of Convergence Local analysis

Difficult cost function and singular local minima

Tips:

Sophisticated methods, such as Newton-like methods,
work well for problems with nonsingular local
minima.

For problems with difficult cost function and singular
local minima, simple methods, such as steepest
descent with constant or diminishing stepsize, with
supplemental features (e.g. heavy ball method) work
better.
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D. Rate of Convergence Local analysis

Convergence Rate Results

Theorem (Proposition 1.3.1)

Consider the quadratic function f(x) = 1
2x
′Qx, where Q

is positive definite and symmetric, and the method of
steepest descent xk+1 = xk − αk∇f(xk), where the step
size αk is chosen according to the minimization rule
f(xk − αk∇f(xk)) = minα≥0 f(xk − α∇f(xk)). Then, for
all k,

f(xk+1) ≤ (
M −m
M +m

)2f(xk),

where M and m are the largest and smallest eigenvalues
of Q, respectively.
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D. Rate of Convergence Local analysis

Convergence Rate Results

Theorem (Lemma 3.1: Kantorovich Inequality)

Let Q be positive definite and symmetric n× n matrix.
Then for any vector y ∈ Rn, y 6= 0, there holds

(y′y)2

(y′Qy)(y′Q−1y)
≥ 4Mm

(M +m)2
,

where M and m are the largest and smallest eigenvalues
of Q, respectively.
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D. Rate of Convergence Local analysis

Convergence Rate Results

Theorem (Proposition 1.3.2: Superlinear
Convergence of Newton-like Methods)

Let f be twice continuously differentiable. Consider a sequence
{xk} generated by the gradient method xk+1 = xk + αkdk and
suppose that xk → x∗, ∇f(x∗) = 0, ∇2f(x∗): positive definite.
Assume further that ∇f(xk) 6= 0 for all k and

lim
k→∞

||dk + (∇2f(x∗))−1∇f(xk)||
||∇f(xk)||

= 0

Then, if αk is chosen by means of the Armijo rule with initial
stepsize s = 1 and σ < 1/2, we have

lim
k→∞

||xk+1 − xk||
||xk − x∗||

= 0.

Furthermore, there exists an integer k̄ ≥ 0 such that αk = 1 for
all k ≥ k̄ (i.e., eventually no reduction will be taking place.)
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D. Rate of Convergence Local analysis

Convergence Rate Results

Newton’s method, combined with the Armijo rule
with initial stepsize = 1, converges superlinearly.

This setting of the Newton’s method, however,
converges only to a local minimum x∗ at which
∇2f(x∗) is positive definite, whenever the starting
point is sufficiently close to such a local minima.
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D. Rate of Convergence Local analysis

Convergence Rate Results

Theorem (Proposition 1.3.3: Convergence rate of
gradient methods for singular problems)

Suppose that the cost function f is convex and its gradient
satisfies for some L the Lipschitz condition

||∇f(x)−∇f(y)|| ≤ L||x− y||,∀x, y ∈ Rn.

Consider a gradient method xk+1 = xk + αkdk where αk is
chosen by the minimization rule, and for some c > 0 and all k
we have

∇f(xk)′dk ≤ −c||∇f(xk)||||dk||.

Suppose that the set of global minima of f is nonempty and
bounded. Then

f(xk)− f∗ = o(1/k),

where f∗ = minx f(x) is the optimal value.

Go to proofs.
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