Mathematical Program with Equilibrium Constraints (MPEC)

Yu-Ching Lee

National Tsing Hua University

MPEC model

$$\begin{array}{ll} \min_{z} & f(z) \\ \text{s.t.} & g(z) \geq 0, \qquad (\text{side inequality}) \\ & h(z) = 0, \qquad (\text{side equality}) \\ & 0 \leq r(z) \perp s(z) \geq 0 \quad (\text{complementarity constraint}) \end{array}$$

 $g: \mathbb{R}^n \to \mathbb{R}^{m_g}, h: \mathbb{R}^n \to \mathbb{R}^{m_h}, r, s: \mathbb{R}^n \to \mathbb{R}^m. \perp$ denotes perpendicularity.

• also called the Mathematical Program with Complementarity Constraints (MPCC).

Outline

- Part 1 Introduction to CP and VI
- Part 2 Source problems of VI/CP
- Part 3 Source problems of MPEC
- Part 4 Solution analysis of MPEC
- Part 5 Prevailing algorithm of MPEC

Complementarity Problem (CP)

$$0 \le r(z) \perp s(z) \ge 0$$

- \circ LCP: both sides of \bot are linear functions
- \circ NCP: not both sides of \perp are linear

Mixed complementarity problem:

$$0 \le r_j(z) \perp s_j(z) \ge 0, \forall j \in J \text{ (an index set)}$$

free $r_j(z) \perp s_j(z) = 0, \forall j \notin J$

Variational inequality

Variational Inequality (VI): Given a set K and a function $F: K \to \mathbb{R}^n$, VI(K, F) :=

$$(y-x)^T F(x) \ge 0, \forall y \in K.$$

---> Solve for an x satisfying the above condition.

 \circ **AVI:** If *F* is affine and *K* is polyhedral.

Relationship between CP and VI

- \star CP can be obtained by specializing VI. VI is more general than CP.
- \star When the set K is a cone, VI can be written as CP.

 \star VI is a nontrivial extension of a nonlinear program (NLP).

From NLP to VI/CP

Constrained optimization program:

 $\begin{array}{ll} \min \quad \theta(x) \\ \text{s.t.} \quad x \in K \end{array}$

 \circ If K is convex, a local minimum x^* satisfies

$$(x - x^*)^T \nabla \theta(x) \ge 0, \, \forall x \in K.$$

 $\dashrightarrow VI(K,\nabla\theta).$

• Known result: At what condition a function, F is the gradient of another function θ , i.e., F is integrable?

— The Jacobian matrix JF(x) is symmetric $\forall x \in$ feasible region.

From VI to NLP

Consider the set K:

$$K \equiv \{ x \in R^n : h(x) = 0, \, g(x) \le 0 \}$$

$$h: \mathbb{R}^n \to \mathbb{R}^\ell, \, g: \mathbb{R}^n \to \mathbb{R}^m.$$

If x solves VI(K,F), then x solves the following NLP

 $\begin{array}{ll} \min & y^T F(x) \\ \text{s.t.} & y \in K \end{array}$

, i.e., $y^* = x$.

KKT condition

The above NLP has the optimality (necessary) condition:

• Assume CQ holds at x, then there exist vectors $\mu \in R^{\ell}$ and $\lambda \in R^m$ such that

$$0 = F(x) + \sum_{j=1}^{\ell} \mu_j \nabla h_j(x) + \sum_{i=1}^{m} \nabla g_i(x)$$
$$0 = h(x)$$
$$0 \le \lambda \perp -g(x) \ge 0.$$

 \rightarrow A mixed CP in x, μ, λ .

Noncooperative game

A noncooperative game, N players.

- \circ Player i 's strategy set: K_i
- \circ Player *i*''s strategy: x^i
- \circ Player i's cost function: $\theta_i(\mathbf{x})$, depends on all players' strategies. \mathbf{x} consists of all subvectors x^i

Noncooperative game/Cooperative game

Given other N-1 players' strategies \mathbf{x}^{-i} , player *i*'s optimization problem:

$$\min \quad \theta_i(x^i, \mathbf{x}^{-i}) \\ \text{s.t.} \quad x^i \in K_i.$$

Nash Equilibrium

The Nash equilibrium is N players' strategies such that no player has the incentive to unilaterally deviate from the current strategy.

Consider convex K_i and convex cost function θ_i .

 \mathbf{x} is a Nash equilibrium if and only if \forall individual i,

$$(y^i - x^i)^T \nabla_{x^i} \theta_i(\mathbf{x}) \ge 0, \ \forall y^i \in K_i$$

Special case: two-person zero-sum game $N=2, \ \theta_1(x)=-\theta_2(x).$

Concatenating individual VIs

Concatenating the gradients

$$\mathbf{F}(\mathbf{x}) \equiv (\nabla_{x^i} \theta_i(\mathbf{x}))_{i=1}^N.$$

and form the Cartesian product

$$\mathbf{K} \equiv \prod_{i=1}^{N} K_i$$

As a result, ${\bf x}$ is a Nash equilibrium iff ${\bf x} \equiv (x^i)_{i=1}^N$ solves the VI

$$(\mathbf{y} - \mathbf{x})^T \mathbf{F}(\mathbf{x}) \ge 0, \forall \mathbf{y} \in \mathbf{K}$$

Mixed CP expression of Nash equilibrium

◦ Suppose set K_i is specified by inequalities and equalities.
◦ concatenating N KKT systems
--→ a mixed CP expression of the Nash Equilibrium.

Bimatrix game

Bimatrix game: $\Gamma(A, B)$

 \star Player I and player II participate.

 \star A and B are **costs matrices** incurred by players I and II respectively.

★ Suppose player I has m strategies and player II has n strategies. $A, B \in \mathbb{R}^{m \times n}$.

 \star Two strategy settings: pure strategy, mixed strategy

Strategy

1. Pure strategies: When player I chooses strategy i and player II chooses strategy j, player I incurs cost A_{ij} and player II incurs B_{ij} .

2. Mixed strategies: Introduce $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$ the probabilities of choosing each strategy for player I and II respectively. Player I incurs *expected cost* $x^T A y$ and player II incurs $x^T B y$.

Bimatrix game—equilibrium of mixed strategies

A pair of mixed strategies (x^*, y^*) is said to be a **Nash equilibrium** if

$$(x^*)^T A y^* \le x^T A y^*, \ \forall x \ge 0 \ \text{and} \ \sum_{i=1}^m x_i = 1$$

$$(x^*)^T B y^* \le x^{*T} A y, \forall y \ge 0 \text{ and } \sum_{j=1}^n y_i = 1$$

Supply-Demand market equilibrium

1. Supply side:

 $\begin{array}{ll} \min & c^T x\\ \text{s.t.} & Ax \geq b\\ & Bx \geq r^*\\ & x \geq 0. \end{array}$

c: cost for the supply activities

x: production activity level

 $Ax \ge b$: technological constraints

 $Bx \geq r^*:$ demand requirement constraint

Supply-Demand market equilibrium

2. Demand side:

$$r^* = Q(p^*) = Dp^* + d$$

 $Q(\cdot) {:}$ market demand function, assumed affine

 p^* : prices

 $r^*\!\!:$ demand quantities

Supply-Demand market equilibrium

Denote π^* : the shadow price (i.e., the market supply prices) corresponding to the constraint $Bx \ge r^*$

3. Equilibrating condition:

$$p^* = \pi^*$$

Mathematically, we are to find p^* and r^* so that the above 3 things are satisfied.

Supply-Demand market equilibrium—LCP formulation

First we write the optimality condition for supply side, where v is the multiplier corresponding to $Ax \ge b$:

$$0 \le c - A^T v^* - B^T \pi^* \quad \bot \quad x^* \ge 0$$
$$0 \le A x^* - b \quad \bot \quad v^* \ge 0$$
$$0 \le B x^* - r^* \quad \bot \quad \pi^* \ge 0$$

Then substitute r^* by $Dp^* + d$ and π^* by p^* . Done.

Cournot production problem

Cournot production problem: The price of goods depends on total quantity in the market.

- quantity competition. (Cournot competition)
- \circ a phenomenon accompanying with oligopoly

 \circ may be reduced to monopoly or extend to perfect competition

Cournot production and distribution problem formulation

Plants are on a network with node set \mathcal{N} and arc set \mathcal{A} . M producers. \mathcal{N}_f are markets where firm f has a plant.

Variables:

 x_{fa} : amount of flow controlled by f on link a

 $\boldsymbol{s_{fi}}$: amount of the commodity produced by firm f at node i

 d_{fj} : amount of the commodity delivered by firm f to node j

Parameters:

 $C_{fi}(s_{fi})$: cost to f of producing s_{fi} units of the commodity at i.

 CAP_{fi} : capacity of firm f to produce at i. $c_{fa}(x_{fa})$: cost to f of shipping x_{fa} units on link a.

Total quantity decides price

Denote

$$Q_j = \sum_{f=1}^M d_{fj}$$

The unit price is expressed as

 $p_j(Q_j)$

Firm f's profit maximization:

$$\max \theta_f \equiv \sum_{j \in \mathcal{N}} d_{fj} p_j(Q_j) - \sum_{i \in \mathcal{N}_f} C_{fi}(s_{fi}) - \sum_{a \in A} x_{fa} c_a(x_{fa})$$

Optimal production and distribution

Constraints:

$$\begin{split} s_{fi} &\leq CAP_{fi}, & \forall i \in N_f \\ d_{fi} + \sum_{a \in A_i^+} x_{fa} &= s_{fi} + \sum_{a \in A_i^-} x_{fa}, & \forall i \in \mathcal{N}_f \\ d_{fi} + \sum_{a \in A_i^+} x_{fa} &= \sum_{a \in A_i^-} x_{fa}, & \forall i \in \mathcal{N} \backslash \mathcal{N}_f \\ d_{fi}, s_{fi}, x_{fa} &\geq 0. \\ A_i^+ : \text{set of arcs with i as the beginning node} \\ A_i^- : \text{set of arcs with i as the ending node.} \end{split}$$

 \star Denote K_f the constraints set containing above constraints.

Nash-Cournot Equilibrium

Let x^f be the stack of variables [d, s, x] and $\mathbf{x} = (x^f)_{f=1}^M$. * Rewrite firm f's optimization problem. Standard form:

$$\begin{array}{ll} \max & \theta_f(\mathbf{x}) \\ \text{s.t.} & x^f \in K_f. \end{array}$$

Nash-Cournot equilibrium

 \mathbf{x} is a equilibrium iff $\mathbf{x} \equiv (x^i)_{i=1}^N$ solves

$$(\mathbf{y} - \mathbf{x})^T \mathbf{F}(\mathbf{x}) \ge 0, \forall \mathbf{y} \in \mathbf{K}$$

where $\mathbf{F}(\mathbf{x})$ be the concatenation of $-\nabla_{x^f} \theta_f(\mathbf{x})$.

Cournot production and distribution—electricity network

Electricity: an oligopoly market — Cournot production

Main aspects:

- generation [multiple generation plants on a node]
- transmission [extra supply through arcs]
- distribution [fulfilling demand on each node]

Additional notations needed:

Parameters:

 G_{fi} : set of generation plants owned by firm f at node $i \in N_f$

 CAP_{fih} : generation capacity at plant $h \in G_{fi}$

 CAP_a : transmission capacity on link a

 $\rho_a(\mathbf{z})$: transmission price on link *a* depending on total flow \mathbf{z}

 C_{fih} : the cost of generation to firm f at site i and plant h.

Variables:

 y_{fih} : amount produced at plant $h \in G_{fi}$

Firm f's profit maximization problem:

 $\max \quad \theta_f(x^f) \\ \text{s.t.} \quad x^f \in K_f(\mathbf{x}^{-f})$

 x^{f} : firm f's decision variables including [d, y, x] \mathbf{x}^{-f} : decisions made by firms other than f $\theta_{f}(x^{f})$: profit of firm f resulting from the decision $K_{f}(\mathbf{x}^{-f})$: constraints set of firm f, where some of the parameters are determined by other firms.

$$\begin{aligned} \theta_{f}(x^{f}) &= \sum_{j \in N} d_{fj} p_{j} \left(\sum_{g=1}^{M} d_{gj} \right) - \sum_{i \in N_{f}} \sum_{h \in G_{fi}} C_{fih}(y_{fih}) - \sum_{a \in A} x_{fa} \rho_{a} \\ K_{f}(\mathbf{x}^{-f}) &\equiv \\ y_{fih} &\leq CAP_{fih}, \forall h \in G_{fk}, \qquad \forall i \in N_{f} \\ d_{fi} + \sum_{a \in A_{i}^{+}} x_{fa} &= \sum_{h \in G_{fi}} y_{fih} + \sum_{a \in A_{i}^{-}} x_{fa}, \quad \forall i \in N_{f} \\ d_{fi} + \sum_{a \in A_{i}^{+}} x_{fa} &= \sum_{a \in A_{i}^{-}} x_{fa}, \qquad \forall i \in N \setminus N_{f} \\ \sum_{f' \in F} x_{f'a} &\leq CAP_{a}, \qquad \forall a \in A \text{ [link capacity]} \\ x_{fa}, y_{fih}, d_{fi} &\geq 0. \end{aligned}$$

Further define $\tilde{K}_f \equiv$ $y_{fih} \leq CAP_{fih}, \forall h \in G_{fk}, \quad \forall i \in N_f$ $d_{fi} + \sum_{a \in A_i^+} x_{fa} = \sum_{h \in G_{fi}} y_{fih} + \sum_{a \in A_i^-} x_{fa}, \quad \forall i \in N_f$ $d_{fi} + \sum_{a \in A_i^+} x_{fa} = \sum_{a \in A_i^-} x_{fa}, \quad \forall i \in N \setminus N_f$

Define

$$K_f(\mathbf{x}) \equiv \{x^f : \sum_{f' \in F} x_{f'a} \le CAP_a\} \cap \tilde{K}_f$$

 $\Omega \equiv \{ \mathbf{x} : \text{ all } \mathbf{x} \text{ satisfying link capacity} \}$

$$\mathbf{K} \equiv \left(\prod_{f=a}^{M} \tilde{K}_{f}\right) \cap \Omega$$
_{30/45}

$$\mathbf{F}(\mathbf{d}, \mathbf{y}, \mathbf{z}) = \begin{pmatrix} -\frac{\partial \theta_f(\mathbf{x})}{\partial d_{fi}} : \forall f, i \\ \frac{\partial C_{fih}(y_{fih})}{\partial y_{fih}} : \forall f, i, h \\ \rho_{\cdot}(\mathbf{z}) \otimes e \end{pmatrix}$$

 ρ is the vector of all ρ_a , $a \in A$, \otimes denotes the Kronecker product, and e is the vector of ones in \mathbb{R}^M . This produces M copies of ρ .

 \rightarrow Equilibrium (**d**, **y**, **z**) are those solve the $VI(\mathbf{K}, \mathbf{F})$.

Structural Estimation

The structural estimation is a (relatively) new-born technique which involves:

- 1. Assuming a parametric model for the system
 - ▶ including probabilistic assumptions on random quantities
- 2. Deducing a set of necessary (structural) equations for unknown parameters
 - ► including optimality condition of optimization within the system
- 3. Solving an MPEC corresponding to a generalized method of moment (GMM) estimate of the parameters.
 - ► including optimality condition of optimization within the system and the orthogonality conditions of instrumental variables used in GMM

Structural Estimation: pure characteristics

To describe the demand of consumers,

- \triangleright Discrete choice, 1974
- \triangleright Random Coefficients Logit (or BLP model), 1995
- \triangleright Pure Characteristics (or PCM), 2007

In PCM,

the utility for consumer i buying product j in market t is

$$u_{ijt} = \mathbf{x_{jt}^T} \boldsymbol{\beta_i} - \alpha_i p_{jt} + \xi_{jt},$$

 $\mathbf{x_{jt}} \in R^K$: observed product characteristics,

 p_{jt} : price of product j in market t,

 $\boldsymbol{\beta}_{i} \in R^{K}$ and α_{i} : consumer specific coefficients, and

 ξ_{jt} : the only unobserved characteristic.

Structural Estimation: pure characteristics

Select the coefficients β_i , α_i and ξ_{jt} so the utility is appropriate.

Structures include market-level observations that should be met:

- \star Market share (or product quantity sold)
- \star Distribution of the random coefficients $\boldsymbol{\beta_i}$ and α_i
- \star Observed product price
- \star Distribution of the marginal cost

 \star Competitive environment ---- a Game with F+1 players

Model development

• Introduce π_{ijt} : probability for consumer *i* to buy product *j* in market *t*.

Rational consumers do the following:

$$0 \le \pi_{ijt} \perp \gamma_{it} - [\mathbf{x_{jt}^T} \boldsymbol{\beta_i} - \alpha_i p_{jt} + \xi_{jt}] \ge 0$$
$$0 \le \gamma_{it} \perp \pi_{i0t} = 1 - \sum_{j=1}^J \pi_{ijt} \ge 0,$$

where
$$\gamma_{it} = \max\left\{0, \max_{1 \le \ell \le J} \left(\mathbf{x}_{\ell \mathbf{t}}^{\mathbf{T}} \boldsymbol{\beta}_{i} - \alpha_{i} p_{\ell t} + \xi_{\ell t}\right)\right\}.$$

Model development

- ▶ The F + 1 players in the Game are F firms and a virtual league of consumers.
 - $\star~F$ firms: pricing problem
 - * The league of consumers: maximizing the aggregated utility, also called "market optimization" problem.
- ► Use Generalized Method of Moments (GMM) for minimizing residuals.

The estimation model

$$\begin{split} \mathbb{QPNCC}_{EsP,NB}(\mathbf{Z}_{\xi};\,\mathbf{\Lambda}_{\xi};\,\mathbf{Z}_{\omega};\,\mathbf{\Lambda}_{\omega};\,\mathcal{M}_{t};\,N;\,q;\,p^{obs};\,x;\,y;\,\eta;\,w;):\\ &\underset{\theta \in \Upsilon;\,mc;\,\xi;\,\omega;\,\mathbf{z}}{\min} \quad \frac{1}{2}\,\boldsymbol{\xi}^{\mathbf{T}}\mathbf{Z}_{\xi}\mathbf{\Lambda}_{\xi}\mathbf{Z}_{\xi}^{\mathbf{T}}\boldsymbol{\xi} + \frac{1}{2}\,\boldsymbol{\omega}^{\mathbf{T}}\mathbf{Z}_{\omega}\mathbf{\Lambda}_{\omega}\mathbf{Z}_{\omega}^{\mathbf{T}}\boldsymbol{\omega}\\ &\text{subject to} \quad \bullet \,\forall t = 1,\cdots,T, j = 1,\cdots,J, \text{ and } f = 1,\cdots,F:\\ & \quad \frac{\mathcal{M}_{t}}{N}\sum_{i=1}^{N}\pi_{ijt} = q_{jt}; \quad \widehat{p}_{jt} = p_{jt}^{obs} - mc_{jt}\\ &\bullet \,\forall t = 1,\cdots,T;\, i = 1,\cdots,N; \text{ and } j = 1,\cdots,J:\\ &\text{ complementarities in the Nash-Bertrand Game}\\ &\bullet 0 \leq mc_{jt} \leq p_{jt}^{obs}\\ &\bullet \beta_{ik} = \overline{\beta}_{k} + \sigma_{\beta k}\eta_{ik} \quad \forall k = 1,\cdots,K,\\ &\bullet \alpha_{i} = \exp(\bar{\alpha}w_{i})\\ &\text{ and} \quad \bullet mc_{jt} = \mathbf{y}_{jt}^{\mathbf{T}}\boldsymbol{\phi} + \omega_{jt}. \end{split}$$

37/45

Appendix: The Nash-Bertrand game

$$\begin{split} 0 &\leq v_{ijt} \quad \perp \quad \frac{\mathcal{M}_t}{N} \pi_{ijt} - \sum_{\ell=1}^J \lambda_{ij\ell t} \geq 0, \\ &\forall i = 1, \cdots, N; j = 1, \cdots, J; t = 1, \cdots, T \\ 0 &\leq \widehat{p}_{jt} \quad \perp \quad -\sum_{i=1}^N \sum_{j' \in J_f} \lambda_{ij'jt} \geq 0, \\ &\forall j = 1, \cdots, J; t = 1, \cdots, T \end{split}$$

$$\begin{split} 0 &\leq \lambda_{ij\ell t} \quad \bot \quad v_{ij\ell t} + \widehat{p}_{\ell t} - \frac{\mathbf{x}_{\ell t}^{\mathbf{T}} \boldsymbol{\beta}_{i} - \alpha_{i} m c_{jt} + \xi_{\ell t}}{\alpha_{i}} \geq 0, \\ &\forall i = 1, \cdots, N; j = 1, \cdots, J; \ell = 1, \cdots, J; t = 1, \cdots, T \end{split}$$

$$\begin{split} 0 &\leq \pi_{ijt} \quad \perp \quad \gamma_{it} + \alpha_i \widehat{p}_{jt} - (\mathbf{x}_{\mathbf{jt}}^{\mathbf{T}} \boldsymbol{\beta}_{i} - \alpha_i m c_{jt} + \xi_{jt}) \geq 0, \\ & \forall i = 1, \cdots, N; j = 1, \cdots, J; t = 1, \cdots, T \\ 0 &\leq \gamma_{it} \quad \perp \quad 1 - \sum_{j=1}^{J} \pi_{ijt} \geq 0. \\ & \forall i = 1, \cdots, N; t = 1, \cdots, T \end{split}$$

MPEC as an extension of NLP

Problematic! The existence of Lagrange multipliers is not guaranteed.

Resolution: MPEC stationary conditions and MPEC constraint qualification

 \circ We will use the MPEC formulation (on p.2) but eliminate the side equality constraint for the following definitions.

MPEC active set

Definition: For a feasible point z, the *MPCC-active set* is given by the active constraint indices

$$I_g(z) = \{i : g_i(z) = 0\}$$
$$I_r(z) = \{i : r_i(z) = 0\}$$
$$I_s(z) = \{i : s_i(z) = 0\}$$

MPEC stationarity

Definition: Let z be feasible for MPEC. We say z is *B*stationary or primal stationary if for each partition $I \cup J$ of $\{1, \ldots, m\}$ such that $I \supset I_r(z)$ and $J \supset I_s(z)$, z is stationary for (NLP(I)):

$$\begin{array}{ll} \min_z & f(z) \\ \text{s.t.} & g(z) \geq 0 \\ & r_I(z) = 0 \leq s_I(z) \\ & r_J(z) \geq 0 = s_J(z) \end{array}$$

Note: Other MPEC-stationarity includes strong-stationarity, weak-stationarity, C-stationary and A-stationarity.

MPEC-LICQ

Definition: Let z be feasible for the MPEC. The *MPEC-LICQ* holds at z if the MPEC-active constraint gradients

$$\{\nabla_z g_i(z): i \in I_g(z)\} \cup \{\nabla_x r_i(z): i \in I_r(z)\} \cup \{\nabla_z s_i(z): i \in I_s(z)\}$$

are linearly independent.

Equivalent NLP

$$\begin{array}{ll} \min_{z} & f(z) \\ \text{s.t.} & g(z) \geq 0 \\ & r(z), s(z) \geq 0 \\ & r(z)^{T} s(z) \leq 0. \end{array}$$

Proposition: Let z^* be feasible for the MPEC at which MPEC-LICQ holds. If z^* is a local minimum of the equivalent NLP, then z^* is a local minimum of the MPEC, z^* is a stationary point of the equivalent NLP, and the KKT multipliers exist for the equivalent NLP.

Note: Similar results can be obtained for formulation of $r(z)^T s(z) = 0$, $r_i(z)s_i(z) = 0$, $\forall i$, and $r_i(z)s_i(z) \le 0$, $\forall i$.

Algorithms for solving MPEC

Methods extended from NLP:

• SQP-Filter code (Fletcher and Leyffer)

Methods for solving CP:

PATH solver (Dirkse, Ferris, and Munson): a generalization of Newton's method
Lemke's method: tableau pivotal

Reference

Finite-Dimensional Variational Inequalities and Complementarity Problems. (2003) F Facchinei and JS Pang.

The Linear Complementarity Problem. (1992) RW Cottle, JS Pang, and RE Stone.

An online document.

A Constructive Approach to Estimating Pure Characteristics Demand Models with Pricing. (2015) *Operations Research*. JS Pang, CL Su, and YC Lee.

Data-driven estimation in Equilibrium using Inverse Optimization. (2015) *Mathematical Programming*. D Bertsimas, V Gupta, IC Paschalidis.

Nonlinear programming advances in mathematical programming with complementarity constraints (2007). D Ralph.