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MPEC model

min f(z)
8.t g(z) >0, (side inequality)
h(z) =0, (side equality)

0<r(z) Ls(z) >0 (complementarity constraint)

g:R" R h:R*” - R™ r s:R* — R™. 1 denotes
perpendicularity.

o also called the Mathematical Program with
Complementarity Constraints (MPCC).



Outline

Part 1 Introduction to CP and VI
Part 2 Source problems of VI/CP
Part 3 Source problems of MPEC
Part 4 Solution analysis of MPEC
Part 5 Prevailing algorithm of MPEC



0<r(z) Ls(z)>0

o LCP: both sides of L are linear functions

o NCP: not both sides of L are linear

Mixed complementarity problem:

0 <7j(z) Lsj(z) >0,Vj € J(an index set)
free rj(z) L sj(2) =0,Yj & J
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Variational Inequality (VI): Given a set K and a
function F': K - R", VI(K, F) :=

(y—2)TF(z) > 0,Vy € K.

--+ Solve for an z satisfying the above condition.

o AVI: If F is affine and K is polyhedral.
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* CP can be obtained by specializing VI. VI is more
general than CP.

* When the set K is a cone, VI can be written as CP.

* VI is a nontrivial extension of a nonlinear program
(NLP).
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Constrained optimization program:

min  6(x)

st. rze K

o If K is convex, a local minimum z* satisfies
(x —2*)TVo(z) >0, Vz € K.
--» VI(K, V).
o Known result: At what condition a function, F' is the
gradient of another function @, i.e., F' is integrable?

— The Jacobian matrix JF(x) is symmetric Va € feasible

region.
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Consider the set K:

K={zeR":h(z)=0, g(x) <0}
h:R"— R’ g:R*— R™.
If = solves VI(K,F), then z solves the following NLP

min yT F(x)
st. yeK

. .
, e, Yyt =ux.
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The above NLP has the optimality (necessary) condition:

o Assume CQ holds at z, then there exist vectors p € R’
and A € R™ such that

J4 m
0=F(z)+ Zuthj(iv) + Z Vgi(x)

--+ A mixed CP in z, u, A.
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A noncooperative game, N players.

o Player ’s strategy set: K;

o Player i'’s strategy:

o Player i’s cost function: 6;(x), depends on all players’
strategies. x consists of all subvectors z

Noncooperative game/Cooperative game

Given other N — 1 players’ strategies x~¢, player i’s
optimization problem:

min  0;(x%, x %)
st. 2t e K;.
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The Nash equilibrium is N players’ strategies such that
no player has the incentive to unilaterally deviate from
the current strategy.

Consider convex K; and convex cost function 6;.

x is a Nash equilibrium if and only if V individual 7,
(y' —a") Vaubi(x) 2 0, Vy' € K;

Special case: two-person zero-sum game

N = 2, 91(.7}) = —92(1:).
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Concatenating the gradients

F(x) = (Vibi(x))iL;.

and form the Cartesian product

N
K= HKZ
i=1
N

As a result, x is a Nash equilibrium iff x = (z)Y; solves
the VI
(y —x)"F(x) >0,vy €K
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o Suppose set K; is specified by inequalities and equalities.

o concatenating N KKT systems
--+ a mixed CP expression of the Nash Equilibrium.

13 /45



Bimatrix game: I'(4, B)

* Player I and player II participate.

+ A and B are costs matrices incurred by players I and
II respectively.

* Suppose player I has m strategies and player II has n
strategies. A, B € R™*™,

* Two strategy settings: pure strategy, mixed strategy
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1. Pure strategies: When player I chooses strategy ¢
and player II chooses strategy j, player I incurs cost A;;
and player II incurs B;;.

2. Mixed strategies: Introduce x € R™ and y € R" the
probabilities of choosing each strategy for player I and II
respectively. Player I incurs expected cost z* Ay and
player II incurs z7 By.
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A pair of mixed strategies (z*,y*) is said to be a Nash
equilibrium if

()T Ay* < 2T Ay*, Vo > 0 and le =1

=1

n
()T By* < *T Ay, Vy > 0 and Zyi =1
j=1
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1. Supply side:

min 'z
st. Ax>b
Bz > r*
xz > 0.

c: cost for the supply activities
x: production activity level
Ax > b: technological constraints

Bx > r*: demand requirement constraint
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2. Demand side:

r*=Q(p*) =Dp*+d
Q(-): market demand function, assumed affine
p*: prices

r*: demand quantities
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Denote 7*: the shadow price (i.e., the market supply
prices) corresponding to the constraint Bz > r*

3. Equilibrating condition:
p* — 71_*

Mathematically, we are to find p* and r* so that the
above 3 things are satisfied.
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First we write the optimality condition for supply side,
where v is the multiplier corresponding to Az > b:

0<c—ATv* =BTz 1| 2*>0
0<Az*—b 1L v*>0
0<Bz*—r* 1L 7n*>0

Then substitute r* by Dp* + d and 7* by p*. Done.
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Cournot production problem: The price of goods
depends on total quantity in the market.

o quantity competition. (Cournot competition)
o a phenomenon accompanying with oligopoly

o may be reduced to monopoly or extend to perfect
competition
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Plants are on a network with node set A and arc set A.
M producers. Ny are markets where firm f has a plant.

Variables:

T ¢, : amount of flow controlled by f on link a

sp; » amount of the commodity produced by firm f at
node ¢

dyj : amount of the commodity delivered by firm f to
node j

Parameters:

Cyi(sfi) = cost to f of producing sy; units of the
commodity at i.

CAPy; : capacity of firm f to produce at 7.

cra(2pq) @ cost to f of shipping xf, units on link a.
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Denote

M
Q= dy
=1

The unit price is expressed as
p;(Q;)
Firm f’s profit maximization:
max 0y = > dppi(Q;) — > Cri(sfi) = > Tacal@sa)
JEN €Ny acA
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Constraints:

SfiSCAPfi, ViENf

dfi-i- Z Tfq = Sfi + Z T fq, ViGNf
a€Af a€A;

dfi-i' z Tfq = z Tfa, ViGN\Nf
acA} a€A;

dyiysfi, Tpq > 0.
A;-F : set of arcs with i as the beginning node
A; :set of arcs with i as the ending node.

* Denote Ky the constraints set containing above
constraints.
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Let ! be the stack of variables [d, s, z] and x = (

zHM

* Rewrite firm f’s optimization problem.
Standard form:

max 0(x)

st. zfeK -

Nash-Cournot equilibrium

x is a equilibrium iff x = (z/)Y; solves

(v —x)TF(x) >0,¥y €K

where F(x) be the concatenation of —V_6(x).
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Electricity: an oligopoly market — Cournot production

Main aspects:
o generation [multiple generation plants on a node]
o transmission [extra supply through arcs]

o distribution [fulfilling demand on each node]
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Additional notations needed:

Parameters:

Gy« set of generation plants owned by firm f at node
1 €N f

C APy, » generation capacity at plant h € Gy;

C AP, : transmission capacity on link a

pa(z) : transmission price on link a depending on total
flow z

CYyin + the cost of generation to firm f at site 7 and plant
h.

Variables:

Yyin © amount produced at plant h € Gy;
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Firm f’s profit maximization problem:

max 0;(xf)
st. zf e Kyp(x™7)

x/ : firm f’s decision variables including [d, y, z]
x~/ : decisions made by firms other than f
0 (') : profit of firm f resulting from the decision

K¢(x7) : constraints set of firm f, where some of the
parameters are determined by other firms.
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dejp] ng] _Z Z Cfih(@/fih)—z$fapa

JEN iENf hEGfi acA
Ey(x™T) =

Yfin < CAPfih,Vh S Gfk, Vi € Nf
dfi+ 3 Tpa= > Ypint > Tfa, Vi€ Ny

aeA?‘ heGy; acA;
dp; + > Tfq = > Zfa, V’iEN\Nf

acAf a€A;
Y. xpqa < CAP,, Va € A [link capacity]
fler

Tfa,Yfin, dpi > 0. 2945



Further define Ky =

yrin < CAPgip,Vh € G g, Vi € Ny
deg+ Y Tpa= D Ypn+ Y, Tja, Vi€ Ny
acAf heGy; a€A;
dfi+ X2 Tfa= X Tfa Vi € N\N;
acAf a€A;
Define

Kf(X) = {xf : Z Tfrg < CAPF,} ﬂkf
f'er
Q= {x: all x satisfying link capacity}

M
K= ka NN

f=a 30/45



005(x) ., .

—8Tfl . Vf, 1

F(d,y,z) = | dCpn(ysin)
dygin

p(z)®@e

Vf,ih

p. is the vector of all p,, a € A, ® denotes the Kronecker
product, and e is the vector of ones in R™. This produces
M copies of p..

--» Equilibrium (d,y,z) are those solve the VI(K,F).
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The structural estimation is a (relatively) new-born
technique which involves:
1. Assuming a parametric model for the system
» including probabilistic assumptions on random
quantities
2. Deducing a set of necessary (structural) equations for
unknown parameters
» including optimality condition of optimization within
the system
3. Solving an MPEC corresponding to a generalized
method of moment (GMM) estimate of the
parameters.
» including optimality condition of optimization within
the system and the orthogonality conditions of

instrumental variables used in GMM
32/45



To describe the demand of consumers,

> Discrete choice, 1974
> Random Coefficients Logit (or BLP model), 1995
> Pure Characteristics (or PCM), 2007

In PCM,
the utility for consumer ¢ buying product j in market ¢ is

uije = X3%0i — cipje + &t
Xjt € RE . observed product characteristics,
pjt - price of product j in market ¢,
B; € R¥ and «; : consumer specific coefficients, and

&je + the only unobserved characteristic.
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Select the coefficients 3;, a; and £j; so the utility is
appropriate.

Structures include market-level observations that should
be met:

* Market share (or product quantity sold)

* Distribution of the random coefficients 3; and «;

* Observed product price

* Distribution of the marginal cost

* Competitive environment --+» a Game with F+ 1
players
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» Introduce m;j;: probability for consumer ¢ to buy
product j in market .

Rational consumers do the following:

0<mye L ~vit— [Xﬁﬁz —aipjt+&i) >0
J

0<w~ve L mo=1- Zﬂ'ijt =0,
J=1

_ Tg
where ;s = max { 0, max, (%38 — cipu + &ur) } -
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» The F' 4 1 players in the Game are F' firms and a
virtual league of consumers.
* F' firms: pricing problem
* The league of consumers: maximizing the
aggregated utility, also called “market optimization’
problem.

» Use Generalized Method of Moments (GMM) for
minimizing residuals.

i
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min
0e€Y;me & wyz

subject to

and

QPNCCrep np(Ze; Ag; Zo; Ay My; N g; p°

5as gy w; )
LETZAZTE + S wTZ A 2T w
eVt=1,--.T,j=1,,J, and f=1,--- ,F:

M N
thﬂ'ijt = qjt; ﬁjt Zp}?fs — MCj¢
i=1
eVi=1,--- T;4=1,---  N;and j=1,--- ,J:

complementarities in the Nash-Bertrand Game
° 0 < mcjy < p2*

o Bik =P +ogpnix Yk=1,--- K,
o a; = exp(aw;)

_ T
® mcj; = th¢ + wji.
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Appendix: The Nash-Bertrand game

0 < vyt

0 < Aijet

0 < mije

0 < it

Wz]t Z)\z]h >0,

Vz:1,~-~,N,]:1,~~-,J;t:1,~-~
N
3 F Az
i=1j'edy
Vi=1,-,Jit=1,---,T
T
I X Bi — aimeje + ot
Vijet + Pet — et - >0,
a;
Vl:l’szj::L”JvZ:lv
Yit + aibje — (XjeBi — aimeji +&1) > 0,
Vi=1,--- ,N;j=1,---,J;t=1,--
J
I—Zﬂ'”tzo
=1
Vi=1,---,Nit=1,---,T



MPEC as an extension of NLP

Problematic! The existence of Lagrange multipliers is not
guaranteed.

Resolution: MPEC stationary conditions and MPEC
constraint qualification

o We will use the MPEC formulation (on p.2) but
eliminate the side equality constraint for the following
definitions.



MPEC active set

Definition: For a feasible point z, the MPCC-active set is
given by the active constraint indices

i
<z>={ rilz) =
i
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MPEC stationarity

Definition: Let z be feasible for MPEC. We say z is B-
stationary or primal stationary if for each partition I U J of
{1,...,m} such that I D I,(z) and J D Is(2), z is stationary

for (NLP(I)):

min,

s.t.

Note: Other MPEC-stationarity includes
strong-stationarity, weak-stationarity, C-stationary and

A-stationarity.



MPEC-LICQ

Definition: Let z be feasible for the MPEC. The MPEC-LIC(Q
holds at z if the MPEC-active constraint gradients

{V.gi(2) i € Ig(2)}U{Vari(2) 1 i € I(2) JU{V.s:i(2) : i € Is(2)

are linearly independent.




Equivalent NLP

min /()

s.t. glz) > 0
r(z),s(z) = 0
r(z)7s(z) < 0.

Proposition: Let z* be feasible for the MPEC at which
MPEC-LICQ holds. If z* is a local minimum of the equiv-
alent NLP, then z* is a local minimum of the MPEC, z*
is a stationary point of the equivalent NLP, and the KKT
multipliers exist for the equivalent NLP.

Note: Similar results can be obtained for formulation of

r(2)Ts(2) =0, ri(2)s:(2) = 0,4, and r;(2)s;(2) < 0, Vi.



Methods extended from NLP:
o SQP-Filter code (Fletcher and Leyffer)

Methods for solving CP:

o PATH solver (Dirkse, Ferris, and Munson): a
generalization of Newton’s method
o Lemke’s method: tableau pivotal
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