## Mathematical Program with Equilibrium Constraints (MPEC)

Yu-Ching Lee
National Tsing Hua University

## MPEC model

$$
\begin{array}{ccl}
\min _{z} & f(z) & \\
\text { s.t. } & g(z) \geq 0, & \text { (side inequality) } \\
& h(z)=0, & \text { (side equality) } \\
& 0 \leq r(z) \perp s(z) \geq 0 & \text { (complementarity constraint) }
\end{array}
$$

$g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{g}}, h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m_{h}}, r, s: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} . \perp$ denotes perpendicularity.

- also called the Mathematical Program with Complementarity Constraints (MPCC).


## Outline

Part 1 Introduction to CP and VI
Part 2 Source problems of VI/CP
Part 3 Source problems of MPEC
Part 4 Solution analysis of MPEC
Part 5 Prevailing algorithm of MPEC

## Complementarity Problem (CP)

$$
0 \leq r(z) \perp s(z) \geq 0
$$

- LCP: both sides of $\perp$ are linear functions
- NCP: not both sides of $\perp$ are linear

Mixed complementarity problem:

$$
\begin{aligned}
& 0 \leq r_{j}(z) \perp s_{j}(z) \geq 0, \forall j \in J(\text { an index set }) \\
& \text { free } r_{j}(z) \perp s_{j}(z)=0, \forall j \notin J
\end{aligned}
$$

## Variational inequality

Variational Inequality (VI): Given a set $K$ and a function $F: K \rightarrow \mathbb{R}^{n}$, $V I(K, F):=$

$$
(y-x)^{T} F(x) \geq 0, \forall y \in K
$$

$\rightarrow$ Solve for an $x$ satisfying the above condition.

- AVI: If $F$ is affine and $K$ is polyhedral.


## Relationship between CP and VI

$\star$ CP can be obtained by specializing VI. VI is more general than CP.
$\star$ When the set $K$ is a cone, VI can be written as CP.
$\star$ VI is a nontrivial extension of a nonlinear program (NLP).

## From NLP to VI/CP

Constrained optimization program:

$$
\begin{array}{ll}
\min & \theta(x) \\
\text { s.t. } & x \in K
\end{array}
$$

- If $K$ is convex, a local minimum $x^{*}$ satisfies

$$
\left(x-x^{*}\right)^{T} \nabla \theta(x) \geq 0, \forall x \in K
$$

$\rightarrow V I(K, \nabla \theta)$.

- Known result: At what condition a function, $F$ is the gradient of another function $\theta$, i.e., $F$ is integrable?
- The Jacobian matrix $J F(x)$ is symmetric $\forall x \in$ feasible region.


## From VI to NLP

Consider the set $K$ :

$$
K \equiv\left\{x \in R^{n}: h(x)=0, g(x) \leq 0\right\}
$$

$h: R^{n} \rightarrow R^{\ell}, g: R^{n} \rightarrow R^{m}$.
If $x$ solves $\mathrm{VI}(\mathrm{K}, \mathrm{F})$, then $x$ solves the following NLP

$$
\begin{array}{ll}
\min & y^{T} F(x) \\
\text { s.t. } & y \in K
\end{array}
$$

, i.e., $y^{*}=x$.

## KKT condition

The above NLP has the optimality (necessary) condition:

- Assume CQ holds at $x$, then there exist vectors $\mu \in R^{\ell}$ and $\lambda \in R^{m}$ such that

$$
\begin{gathered}
0=F(x)+\sum_{j=1}^{\ell} \mu_{j} \nabla h_{j}(x)+\sum_{i=1}^{m} \nabla g_{i}(x) \\
0=h(x) \\
0 \leq \lambda \perp-g(x) \geq 0
\end{gathered}
$$

$\rightarrow$ A mixed CP in $x, \mu, \lambda$.

## Noncooperative game

A noncooperative game, $N$ players.

- Player $i$ 's strategy set: $K_{i}$
- Player $i^{\prime}$ 's strategy: $x^{i}$
- Player $i$ 's cost function: $\theta_{i}(\mathbf{x})$, depends on all players' strategies. $\mathbf{x}$ consists of all subvectors $x^{i}$


## Noncooperative game/Cooperative game

Given other $N-1$ players' strategies $\mathbf{x}^{-i}$, player $i$ 's optimization problem:

$$
\begin{array}{ll}
\min & \theta_{i}\left(x^{i}, \mathbf{x}^{-i}\right) \\
\text { s.t. } & x^{i} \in K_{i} .
\end{array}
$$

## Nash Equilibrium

The Nash equilibrium is $N$ players' strategies such that no player has the incentive to unilaterally deviate from the current strategy.

Consider convex $K_{i}$ and convex cost function $\theta_{i}$.
$\mathbf{x}$ is a Nash equilibrium if and only if $\forall$ individual $i$,

$$
\left(y^{i}-x^{i}\right)^{T} \nabla_{x^{i}} \theta_{i}(\mathbf{x}) \geq 0, \forall y^{i} \in K_{i}
$$

Special case: two-person zero-sum game $N=2, \theta_{1}(x)=-\theta_{2}(x)$.

## Concatenating individual VIs

Concatenating the gradients

$$
\mathbf{F}(\mathbf{x}) \equiv\left(\nabla_{x^{i}} \theta_{i}(\mathbf{x})\right)_{i=1}^{N} .
$$

and form the Cartesian product

$$
\mathbf{K} \equiv \prod_{i=1}^{N} K_{i}
$$

As a result, $\mathbf{x}$ is a Nash equilibrium iff $\mathbf{x} \equiv\left(x^{i}\right)_{i=1}^{N}$ solves the VI

$$
(\mathbf{y}-\mathbf{x})^{T} \mathbf{F}(\mathbf{x}) \geq 0, \forall \mathbf{y} \in \mathbf{K}
$$

## Mixed CP expression of Nash equilibrium

- Suppose set $K_{i}$ is specified by inequalities and equalities.
- concatenating $N$ KKT systems
$\rightarrow$ a mixed CP expression of the Nash Equilibrium.


## Bimatrix game

Bimatrix game: $\Gamma(A, B)$

* Player I and player II participate.
$\star A$ and $B$ are costs matrices incurred by players I and II respectively.
$\star$ Suppose player I has $m$ strategies and player II has $n$ strategies. $A, B \in R^{m \times n}$.
$\star$ Two strategy settings: pure strategy, mixed strategy


## Strategy

1. Pure strategies: When player I chooses strategy $i$ and player II chooses strategy $j$, player I incurs cost $A_{i j}$ and player II incurs $B_{i j}$.
2. Mixed strategies: Introduce $x \in R^{m}$ and $y \in R^{n}$ the probabilities of choosing each strategy for player I and II respectively. Player I incurs expected cost $x^{T} A y$ and player II incurs $x^{T} B y$.

## Bimatrix game equilibrium of mixed strategies

A pair of mixed strategies $\left(x^{*}, y^{*}\right)$ is said to be a Nash equilibrium if

$$
\begin{aligned}
& \left(x^{*}\right)^{T} A y^{*} \leq x^{T} A y^{*}, \forall x \geq 0 \text { and } \sum_{i=1}^{m} x_{i}=1 \\
& \left(x^{*}\right)^{T} B y^{*} \leq x^{* T} A y, \forall y \geq 0 \text { and } \sum_{j=1}^{n} y_{i}=1
\end{aligned}
$$

## Supply-Demand market equilibrium

## 1. Supply side:

$$
\begin{array}{lc}
\min & c^{T} x \\
\text { s.t. } & A x \geq b \\
& B x \geq r^{*} \\
& x \geq 0
\end{array}
$$

$c$ : cost for the supply activities
$x$ : production activity level
$A x \geq b$ : technological constraints
$B x \geq r^{*}:$ demand requirement constraint

## Supply-Demand market equilibrium

2. Demand side:

$$
r^{*}=Q\left(p^{*}\right)=D p^{*}+d
$$

$Q(\cdot)$ : market demand function, assumed affine
$p^{*}$ : prices
$r^{*}$ : demand quantities

## Supply-Demand market equilibrium

Denote $\pi^{*}$ : the shadow price (i.e., the market supply prices) corresponding to the constraint $B x \geq r^{*}$

## 3. Equilibrating condition:

$$
p^{*}=\pi^{*}
$$

Mathematically, we are to find $p^{*}$ and $r^{*}$ so that the above 3 things are satisfied.

## Supply-Demand market equilibrium-LCP formulation

First we write the optimality condition for supply side, where $v$ is the multiplier corresponding to $A x \geq b$ :

$$
\begin{array}{rll}
0 \leq c-A^{T} v^{*}-B^{T} \pi^{*} & \perp & x^{*} \geq 0 \\
0 \leq A x^{*}-b & \perp & v^{*} \geq 0 \\
0 \leq B x^{*}-r^{*} & \perp & \pi^{*} \geq 0
\end{array}
$$

Then substitute $r^{*}$ by $D p^{*}+d$ and $\pi^{*}$ by $p^{*}$. Done.

## Cournot production problem

Cournot production problem: The price of goods depends on total quantity in the market.

- quantity competition. (Cournot competition)
- a phenomenon accompanying with oligopoly
- may be reduced to monopoly or extend to perfect competition


## Cournot production and distribution problem formulation

Plants are on a network with node set $\mathcal{N}$ and $\operatorname{arc} \operatorname{set} \mathcal{A}$. $M$ producers. $\mathcal{N}_{f}$ are markets where firm $f$ has a plant.

## Variables:

$x_{f a}$ : amount of flow controlled by $f$ on link $a$ $s_{f i}$ : amount of the commodity produced by firm $f$ at node $i$
$d_{f j}$ : amount of the commodity delivered by firm $f$ to node $j$

## Parameters:

$C_{f i}\left(s_{f i}\right)$ : cost to $f$ of producing $s_{f i}$ units of the commodity at $i$.
$C A P_{f i}$ : capacity of firm $f$ to produce at $i$.
$c_{f a}\left(x_{f a}\right)$ : cost to $f$ of shipping $x_{f a}$ units on link $a$.

## Total quantity decides price

Denote

$$
Q_{j}=\sum_{f=1}^{M} d_{f j}
$$

The unit price is expressed as

$$
p_{j}\left(Q_{j}\right)
$$

Firm f's profit maximization:

$$
\max \theta_{f} \equiv \sum_{j \in \mathcal{N}} d_{f j} p_{j}\left(Q_{j}\right)-\sum_{i \in \mathcal{N}_{f}} C_{f i}\left(s_{f i}\right)-\sum_{a \in A} x_{f a} c_{a}\left(x_{f a}\right)
$$

## Optimal production and distribution

## Constraints:

$$
\begin{array}{ll}
s_{f i} \leq C A P_{f i}, & \forall i \in N_{f} \\
d_{f i}+\sum_{a \in A_{i}^{+}} x_{f a}=s_{f i}+\sum_{a \in A_{i}^{-}} x_{f a}, & \forall i \in \mathcal{N}_{f} \\
d_{f i}+\sum_{a \in A_{i}^{+}} x_{f a}=\sum_{a \in A_{i}^{-}} x_{f a}, & \forall i \in \mathcal{N} \backslash \mathcal{N}_{f} \\
d_{f i}, s_{f i}, x_{f a} \geq 0 . &
\end{array}
$$

$A_{i}^{+}$: set of arcs with i as the beginning node
$A_{i}^{-}$: set of arcs with i as the ending node.
$\star$ Denote $K_{f}$ the constraints set containing above constraints.

## Nash-Cournot Equilibrium

Let $x^{f}$ be the stack of variables $[d, s, x]$ and $\mathbf{x}=\left(x^{f}\right)_{f=1}^{M}$.
$\star$ Rewrite firm f's optimization problem.

## Standard form:

$$
\begin{array}{ll}
\max & \theta_{f}(\mathbf{x}) \\
\text { s.t. } & x^{f} \in K_{f} .
\end{array}
$$

## Nash-Cournot equilibrium

$\mathbf{x}$ is a equilibrium iff $\mathbf{x} \equiv\left(x^{i}\right)_{i=1}^{N}$ solves

$$
(\mathbf{y}-\mathbf{x})^{T} \mathbf{F}(\mathbf{x}) \geq 0, \forall \mathbf{y} \in \mathbf{K}
$$

where $\mathbf{F}(\mathbf{x})$ be the concatenation of $-\nabla_{x^{f}} \theta_{f}(\mathbf{x})$.

## Cournot production and distribution - electricity network

Electricity: an oligopoly market - Cournot production

Main aspects:

- generation [multiple generation plants on a node]
- transmission [extra supply through arcs]
- distribution [fulfilling demand on each node]


## Electricity market notations

Additional notations needed:

## Parameters:

$G_{f i}$ : set of generation plants owned by firm $f$ at node $i \in N_{f}$
$C A P_{\text {fih }}$ : generation capacity at plant $h \in G_{f i}$
$C A P_{a}$ : transmission capacity on link $a$
$\rho_{a}(\mathbf{z})$ : transmission price on link $a$ depending on total
flow z
$C_{f i h}$ : the cost of generation to firm $f$ at site $i$ and plant $h$.
Variables:
$y_{\text {fih }}$ : amount produced at plant $h \in G_{f i}$

## Electricity market notations

Firm f's profit maximization problem:

$$
\begin{array}{rc}
\max & \theta_{f}\left(x^{f}\right) \\
\text { s.t. } & x^{f} \in K_{f}\left(\mathbf{x}^{-f}\right)
\end{array}
$$

$x^{f}$ : firm $f$ 's decision variables including $[d, y, x]$
$\mathbf{x}^{-f}$ : decisions made by firms other than $f$
$\theta_{f}\left(x^{f}\right)$ : profit of firm $f$ resulting from the decision
$K_{f}\left(\mathbf{x}^{-f}\right)$ : constraints set of firm $f$, where some of the parameters are determined by other firms.

## Electricity market notations

$$
\theta_{f}\left(x^{f}\right)=\sum_{j \in N} d_{f j} p_{j}\left(\sum_{g=1}^{M} d_{g j}\right)-\sum_{i \in N_{f}} \sum_{h \in G_{f i}} C_{f i h}\left(y_{f i h}\right)-\sum_{a \in A} x_{f a} \rho_{a}
$$

$$
K_{f}\left(\mathbf{x}^{-f}\right) \equiv
$$

$$
y_{f i h} \leq C A P_{f i h}, \forall h \in G_{f k}, \quad \forall i \in N_{f}
$$

$$
d_{f i}+\sum_{a \in A_{i}^{+}} x_{f a}=\sum_{h \in G_{f i}} y_{f i h}+\sum_{a \in A_{i}^{-}} x_{f a}, \quad \forall i \in N_{f}
$$

$$
d_{f i}+\sum_{a \in A_{i}^{+}} x_{f a}=\sum_{a \in A_{i}^{-}} x_{f a}
$$

$$
\forall i \in N \backslash N_{f}
$$

$$
\sum_{f^{\prime} \in F} x_{f^{\prime} a} \leq C A P_{a}
$$

$\forall a \in A$ [link capacity]

$$
x_{f a}, y_{f i h}, d_{f i} \geq 0
$$

## Electricity market notations

Further define $\tilde{K}_{f} \equiv$

$$
\begin{array}{ll}
y_{f i h} \leq C A P_{f i h}, \forall h \in G_{f k}, & \forall i \in N_{f} \\
d_{f i}+\sum_{a \in A_{i}^{+}} x_{f a}=\sum_{h \in G_{f i}} y_{f i h}+\sum_{a \in A_{i}^{-}} x_{f a}, & \forall i \in N_{f} \\
d_{f i}+\sum_{a \in A_{i}^{+}} x_{f a}=\sum_{a \in A_{i}^{-}} x_{f a}, & \forall i \in N \backslash N_{f}
\end{array}
$$

Define

$$
\begin{gathered}
K_{f}(\mathbf{x}) \equiv\left\{x^{f}: \sum_{f^{\prime} \in F} x_{f^{\prime} a} \leq C A P_{a}\right\} \cap \tilde{K}_{f} \\
\Omega \equiv\{\mathbf{x}: \text { all } \mathbf{x} \text { satisfying link capacity }\} \\
\mathbf{K} \equiv\left(\prod_{f=a}^{M} \tilde{K}_{f}\right) \cap \Omega
\end{gathered}
$$

## Electricity market notations

$$
\mathbf{F}(\mathbf{d}, \mathbf{y}, \mathbf{z})=\left(\begin{array}{c}
-\frac{\partial \theta_{f}(\mathbf{x})}{\partial d_{f i}}: \forall f, i \\
\frac{d C_{f i h}\left(y_{f i h}\right)}{d y_{f i h}}: \forall f, i, h \\
\rho \cdot(\mathbf{z}) \otimes e
\end{array}\right)
$$

$\rho$. is the vector of all $\rho_{a}, a \in A, \otimes$ denotes the Kronecker product, and $e$ is the vector of ones in $R^{M}$. This produces $M$ copies of $\rho$.
$\rightarrow$ Equilibrium $(\mathbf{d}, \mathbf{y}, \mathbf{z})$ are those solve the $V I(\mathbf{K}, \mathbf{F})$.

## Structural Estimation

The structural estimation is a (relatively) new-born technique which involves:

1. Assuming a parametric model for the system

- including probabilistic assumptions on random quantities

2. Deducing a set of necessary (structural) equations for unknown parameters

- including optimality condition of optimization within the system

3. Solving an MPEC corresponding to a generalized method of moment (GMM) estimate of the parameters.

- including optimality condition of optimization within the system and the orthogonality conditions of instrumental variables used in GMM


## Structural Estimation: pure characteristics

To describe the demand of consumers,
$\triangleright$ Discrete choice, 1974
$\triangleright$ Random Coefficients Logit (or BLP model), 1995
$\triangleright$ Pure Characteristics (or PCM), 2007

## In PCM,

the utility for consumer $i$ buying product $j$ in market $t$ is

$$
u_{i j t}=\mathbf{x}_{\mathbf{j} \mathbf{t}}^{\mathbf{T}} \boldsymbol{\beta}_{\boldsymbol{i}}-\alpha_{i} p_{j t}+\xi_{j t}
$$

$\mathbf{x}_{\mathbf{j t}} \in R^{K}$ : observed product characteristics,
$p_{j t}$ : price of product $j$ in market $t$,
$\boldsymbol{\beta}_{\boldsymbol{i}} \in R^{K}$ and $\alpha_{i}$ : consumer specific coefficients, and $\xi_{j t}$ : the only unobserved characteristic.

## Structural Estimation: pure characteristics

Select the coefficients $\boldsymbol{\beta}_{\boldsymbol{i}}, \alpha_{i}$ and $\xi_{j t}$ so the utility is appropriate.

Structures include market-level observations that should be met:
$\star$ Market share (or product quantity sold)
$\star$ Distribution of the random coefficients $\boldsymbol{\beta}_{\boldsymbol{i}}$ and $\alpha_{i}$
$\star$ Observed product price
$\star$ Distribution of the marginal cost
$\star$ Competitive environment $\rightarrow$ a Game with $F+1$
players

## Model development

- Introduce $\pi_{i j t}$ : probability for consumer $i$ to buy product $j$ in market $t$.

Rational consumers do the following:

$$
\begin{aligned}
& 0 \leq \pi_{i j t} \quad \perp \quad \gamma_{i t}-\left[\mathbf{x}_{\mathbf{j} \mathbf{t}}^{\mathbf{T}} \boldsymbol{\beta}_{\boldsymbol{i}}-\alpha_{i} p_{j t}+\xi_{j t}\right] \geq 0 \\
& 0 \leq \gamma_{i t} \quad \perp \quad \pi_{i 0 t}=1-\sum_{j=1}^{J} \pi_{i j t} \geq 0
\end{aligned}
$$

where $\gamma_{i t}=\max \left\{0, \max _{1 \leq \ell \leq J}\left(\mathbf{x}_{\ell \mathbf{t}}^{\mathbf{T}} \boldsymbol{\beta}_{\boldsymbol{i}}-\alpha_{i} p_{\ell t}+\xi_{\ell t}\right)\right\}$.

## Model development

- The $F+1$ players in the Game are $F$ firms and a virtual league of consumers.
$\star F$ firms: pricing problem
$\star$ The league of consumers: maximizing the aggregated utility, also called "market optimization" problem.
- Use Generalized Method of Moments (GMM) for minimizing residuals.


## The estimation model

$$
\begin{aligned}
& \mathbb{Q P N C C}_{E s P, N B}\left(\mathbf{Z}_{\xi} ; \boldsymbol{\Lambda}_{\xi} ; \mathbf{Z}_{\omega} ; \boldsymbol{\Lambda}_{\omega} ; \mathcal{M}_{t} ; N ; q ; p^{o b s} ; x ; y ; \eta ; w ;\right) \text { : } \\
& \min _{\theta \in \Upsilon ; m c ; \xi ; \omega ; \mathbf{z}} \frac{1}{2} \boldsymbol{\xi}^{\boldsymbol{T}} \mathbf{Z}_{\xi} \boldsymbol{\Lambda}_{\xi} \mathbf{Z}_{\xi}^{\mathrm{T}} \boldsymbol{\xi}+\frac{1}{2} \boldsymbol{\omega}^{\boldsymbol{T}} \mathbf{Z}_{\omega} \boldsymbol{\Lambda}_{\omega} \mathbf{Z}_{\omega}^{\mathbf{T}} \boldsymbol{\omega} \\
& \text { subject to } \\
& \text { - } \forall t=1, \cdots, T, j=1, \cdots, J \text {, and } f=1, \cdots, F \text { : } \\
& \frac{\mathcal{M}_{t}}{N} \sum_{i=1}^{N} \pi_{i j t}=q_{j t} ; \quad \widehat{p}_{j t}=p_{j t}^{\text {obs }}-m c_{j t}
\end{aligned}
$$

$\bullet \forall t=1, \cdots, T ; i=1, \cdots, N ;$ and $j=1, \cdots, J$ :
complementarities in the Nash-Bertrand Game

- $0 \leq m c_{j t} \leq p_{j t}^{o b s}$
- $\beta_{i k}=\bar{\beta}_{k}+\sigma_{\beta k} \eta_{i k} \quad \forall k=1, \cdots, K$,
- $\alpha_{i}=\exp \left(\bar{\alpha} w_{i}\right)$
and
- $m c_{j t}=\mathbf{y}_{\mathbf{j} \mathbf{t}}^{\mathbf{T}} \phi+\omega_{j t}$.


## Appendix: The Nash-Bertrand game

$$
\begin{aligned}
& 0 \leq v_{i j t} \quad \perp \quad \frac{\mathcal{M}_{t}}{N} \pi_{i j t}-\sum_{\ell=1}^{J} \lambda_{i j \ell t} \geq 0, \\
& \forall i=1, \cdots, N ; j=1, \cdots, J ; t=1, \cdots, T \\
& 0 \leq \widehat{p}_{j t} \quad \perp \quad-\sum_{i=1}^{N} \sum_{j^{\prime} \in J_{f}} \lambda_{i j^{\prime} j t} \geq 0, \\
& \forall j=1, \cdots, J ; t=1, \cdots, T \\
& 0 \leq \lambda_{i j \ell t} \quad \perp \quad v_{i j \ell t}+\widehat{p}_{\ell t}-\frac{\mathbf{x}_{\ell \mathrm{t}}^{\mathbf{T}} \boldsymbol{\beta}_{\boldsymbol{i}}-\alpha_{i} m c_{j t}+\xi_{\ell t}}{\alpha_{i}} \geq 0, \\
& \forall i=1, \cdots, N ; j=1, \cdots, J ; \ell=1, \cdots, J ; t=1, \cdots, T \\
& 0 \leq \pi_{i j t} \quad \perp \quad \gamma_{i t}+\alpha_{i} \widehat{p}_{j t}-\left(\mathbf{x}_{\mathbf{j t}}^{\mathbf{T}} \boldsymbol{\beta}_{\boldsymbol{i}}-\alpha_{i} m c_{j t}+\xi_{j t}\right) \geq 0, \\
& \forall i=1, \cdots, N ; j=1, \cdots, J ; t=1, \cdots, T \\
& 0 \leq \gamma_{i t} \quad \perp \quad 1-\sum_{j=1}^{J} \pi_{i j t} \geq 0 . \\
& \forall i=1, \cdots, N ; t=1, \cdots, T
\end{aligned}
$$

## MPEC as an extension of NLP

Problematic! The existence of Lagrange multipliers is not guaranteed.

Resolution: MPEC stationary conditions and MPEC constraint qualification

- We will use the MPEC formulation (on p.2) but eliminate the side equality constraint for the following definitions.


## MPEC active set

Definition: For a feasible point $z$, the MPCC-active set is given by the active constraint indices

$$
\begin{aligned}
& I_{g}(z)=\left\{i: g_{i}(z)=0\right\} \\
& I_{r}(z)=\left\{i: r_{i}(z)=0\right\} \\
& I_{s}(z)=\left\{i: s_{i}(z)=0\right\}
\end{aligned}
$$

## MPEC stationarity

Definition: Let $z$ be feasible for MPEC. We say $z$ is $B$ stationary or primal stationary if for each partition $I \cup J$ of $\{1, \ldots, m\}$ such that $I \supset I_{r}(z)$ and $J \supset I_{s}(z), z$ is stationary for $(N L P(I))$ :

$$
\begin{array}{ll}
\min _{z} & f(z) \\
\text { s.t. } & g(z) \geq 0 \\
& r_{I}(z)=0 \leq s_{I}(z) \\
& r_{J}(z) \geq 0=s_{J}(z)
\end{array}
$$

Note: Other MPEC-stationarity includes strong-stationarity, weak-stationarity, C-stationary and A-stationarity.

## MPEC-LICQ

Definition: Let $z$ be feasible for the MPEC. The MPEC-LICQ holds at $z$ if the MPEC-active constraint gradients

$$
\left\{\nabla_{z} g_{i}(z): i \in I_{g}(z)\right\} \cup\left\{\nabla_{x} r_{i}(z): i \in I_{r}(z)\right\} \cup\left\{\nabla_{z} s_{i}(z): i \in I_{s}(z)\right\}
$$

are linearly independent.

## Equivalent NLP

$$
\begin{array}{lrl}
\min _{z} & f(z) & \\
\text { s.t. } & g(z) & \geq 0 \\
& r(z), s(z) & \geq 0 \\
& r(z)^{T} s(z) & \leq 0 .
\end{array}
$$

Proposition: Let $z^{*}$ be feasible for the MPEC at which MPEC-LICQ holds. If $z^{*}$ is a local minimum of the equivalent NLP, then $z^{*}$ is a local minimum of the MPEC, $z^{*}$ is a stationary point of the equivalent NLP, and the KKT multipliers exist for the equivalent NLP.

Note: Similar results can be obtained for formulation of

$$
r(z)^{T} s(z)=0, r_{i}(z) s_{i}(z)=0, \forall i, \text { and } r_{i}(z) s_{i}(z) \leq 0, \forall i
$$

## Algorithms for solving MPEC

Methods extended from NLP:

- SQP-Filter code (Fletcher and Leyffer)

Methods for solving CP:

- PATH solver (Dirkse, Ferris, and Munson): a generalization of Newton's method
- Lemke's method: tableau pivotal


## Reference

Finite-Dimensional Variational Inequalities and Complementarity Problems. (2003) F Facchinei and JS Pang.
The Linear Complementarity Problem. (1992) RW Cottle, JS Pang, and RE Stone.

An online document.
A Constructive Approach to Estimating Pure Characteristics Demand Models with Pricing. (2015) Operations Research. JS Pang, CL Su, and YC Lee.

Data-driven estimation in Equilibrium using Inverse
Optimization. (2015) Mathematical Programming. D Bertsimas, V Gupta, IC Paschalidis.

Nonlinear programming advances in mathematical programming with complementarity constraints (2007). D Ralph.

