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Chun-Han Wang (National Tsing Hua University),
Wenzhu Zhang (National Tsing Hua University),
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Frequency Competition Among Airlines on Coordinated Airports • § Introduction

Introduction::Frequency Competition

Flight frequency has been continually
increasing

Two major tools of competition: price
competition and frequency competition.

They are very different in nature.

Low-cost carriers compete only on price.
Full-service carriers compete both on price and
frequency.

Higher flight frequency results in a greater
market share. (S-Curve model often describes
the relationship between flight frequency and
market share.)

(Source: Barnhart, C., Smith, B. (2012). Quantitative
problem solving methods in the airline industry. Heidelberg:
Springer.)
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Frequency Competition Among Airlines on Coordinated Airports • § Introduction

Introduction::Frequency Competition (conti’d)

Full-service airlines are motivated to offer dense
networks of frequent services to acquire more
passengers and, thus, increase their profits.

Excessive frequency may cause diseconomies of
scale and airlines’ profits are restricted by their
limited seats provision.

Needing optimal decisions to fine tune
frequency in order to better match their
demand and supply. (Source: Vaze, V., Barnhart, C. (2012). Modeling airline

frequency competition for airport congestion mitigation.
Transportation Science, 46, 512–53

Yu-Ching Lee On operations research topics in the competitive environment Sep 1 2022 @ NTHU Summer School 4 / 44



Frequency Competition Among Airlines on Coordinated Airports • § Introduction

Introduction::Time Slots and Slot-Constrained Airports

Time Slot: “a permission granted by the owner of an airport designated as level
3, which allows the grantee to schedule a landing or departure at that airport
during a specific time period”.
Slot allocation: according to the guidelines issued by International Air Transport
Association (IATA) Worldwide Airport Slots Group

“Grandfather’s right”
“Use it or lose it” rule

Airports are categorized according to congestion level into level 1 (non-coordinated
airport), level 2 (schedule-facilitated airport), and level 3 (coordinated airport)
There are close to 200 level 3 airports out of 3,800 airports in the world.

In the U.S.: Ronald Reagan Washington National Airport (DCA), John F. Kennedy
International Airport (JFK), and LaGuardia Airport (LGA)
The density of level 3 airports in the U.S. is lower than that in other continents,
where the lack of infrastructure is sometimes hardly resolved.
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Frequency Competition Among Airlines on Coordinated Airports • § Introduction

Introduction::Time Slots and Slot-Constrained Airports
(conti’d)

Although, compared to the total number, level 3 airports account for only a small
portion, 43% of global traffic departs from level 3 airports (IATA, 2020)

A delay occurs at the level 3 airport will propagate in the subsequent schedule.

The percentage of international flights involving at least one level 3 airports is
higher than that of domestic flights. Nevertheless, passengers are more sensitive
to the inter-flight time when taking short-haul flights.

Frequency adjustment will have a greater effect on passengers taking short-haul
domestic flights than those taking long-haul international flights.

The modeling logic: Frequency should be planned for any airports and
segments. Furthermore, when planning for flights departing and arriving at
congested (level 3) airports, the competitive environment should be addressed.
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Frequency Competition Among Airlines on Coordinated Airports • § Introduction

Introduction::Airline Alliances
Antitrust Immunity: The U.S. Department of Transportation’s (DOT’s) policy
of “granting immunity from U.S. antitrust laws (ATI) for coordination on
schedules and fares” by members of the three large international airline alliances:
Star Alliance, oneworld, and SkyTeam.
Some argue that it is beneficial to form an alliance because it contribute to
streamlining costs and increasing competitiveness, better coordinating supply and
demand, raising barriers to new entrants, reshaping industry structure, and
overcoming government restrictions (Bissessur Alamdari,1998; Goh Uncles,
2003).
By contrast, some believe that alliance formation intensifies competition both
between and within alliances and that small airlines are treated unfairly in an
alliance (Suen, 2005).
Therefore, it is crucial to investigate the impact that an alliance has on frequency
competition.
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Frequency Competition Among Airlines on Coordinated Airports • § Literature Review

Literature Review

Following Hansen (1990), Dobson & Lederer (1993) and Vaze & Barnhart (2012),
we propose the game-theoretic model to solve the frequency competition problem.

We consider a multi-agent problem and maximize airline profits in a network system
with multiple airports and include flow balance conditions in slot-constrained
airports.

Vaze & Barnhart (2012) mainly compute a pure-strategy Nash equilibrium using
the best-response algorithm, which can compute an exact equilibrium when there
are two players and an approximate equilibrium when there are more than two
players.

We show that a pure-strategy Nash equilibrium may not always exist and derive the
necessary conditions for this statement. Then, we formulate the problem with a
mixed-strategy Nash equilibrium programming model since every finite game has at
least one mixed-strategy Nash equilibrium.
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Frequency Competition Among Airlines on Coordinated Airports • § Literature Review

Literature Review (conti’d)

Best-response theory has been applied jointly with different numerical techniques
to solve or estimate the Nash equilibrium (Wei & Hansen, 2007; Aguirregabiria &
Ho, 2012; Vaze & Barnhart, 2012)

We apply the KKT systems, which are based on Lagrange multipliers. The technique
is commonly used to solve the generalized Nash equilibrium problem (GNEP) by
concatenating all KKT conditions corresponding to each player’s optimization
problem.
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Notation
Symbol Description
A Set of airlines
K Set of alliances

Uk Set of airlines in alliance k, k ∈ K

Na/Nk Set of feasible strategies played by airline a/alliance k
GA/GK Set of feasible strategy profiles played simultaneously by all airlines/alliances
I Set of origin airports (level 3 and congested airports), e.g., DCA, LGA and JFK
J Set of destination airports
Paij Average fare charged by airline a from airport i to j
Caij Operating cost per flight for airline a from airport i to j
Saij Seating capacity of each flight of airline a from airport i to j
Uai Maximum number of flights that can be scheduled by airline a at airport i
Lai Minimum number of flights that must be scheduled by airline a at airport i
Mij Total passenger demand from airport i to j
Tij Total flights operated from airport i to j
UTij Upper bound of total flights operated from airport i to j
LF ij Aircraft maximal allowable load factor from airport i to j
ε Tolerance level of the flow imbalance in slot-constrained airports
fa/fk Strategy of service frequencies for airline a/alliance k
Qaij Number of passengers carried by airline a from airport i to j
faij Number of flights operated by airline a from airport i to j

Table: Key Notation
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Airline’s optimization problem — Model I

maximize
faij ,Qaij

∑
i∈I

∑
j∈J

(PaijQaij − Caij faij ) (1)

subject to Qaij ≤
faij∑

a′∈A
fa′ ij

Mij , ∀i ∈ I , j ∈ J, (2)

Qaij ≤ LF ijSaij faij , ∀i ∈ I , j ∈ J, (3)∑
j∈J

faij ≤ Uai , ∀i ∈ I , (4)

∑
j∈J

faij ≥ Lai , ∀i ∈ I , (5)

∣∣∣∣∣∣
∑

j∈I\{d}
fadj −

∑
i∈I\{d}

faid

∣∣∣∣∣∣ ≤ ε, ∀d ∈ I , (6)

faij ,Qaij ∈ Z+
0 , ∀i ∈ I , j ∈ J. (7)

— Constraints (2) and (3) state that the
number of passengers for airline a from
airport i to j is restricted by both demand
(i.e., market share) and supply (i.e.,
available seats).

— Constraints (4) and (5), comprising the
upper and lower bounds of the number of
flights for airline a, denote that the
utilization of take-off slots should reach the
minimum level but not exceed the maximum
level.

— Constraint (6) requires that the difference
between the numbers of flights arriving at
and departing from airport i should not
exceed the tolerance level ε.
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Assumption and Result

Assumption: PaijbLF ijSaij faijc − Caij faij > 0, ∀a ∈ A, i ∈ I , j ∈ J, MijLF ijSaij 6= 0 and
faij ∈ N.

Theorem

If there exists pure-strategy Nash equilibrium (f ∗a1
, f ∗ã1

), then ∀a ∈ A, i ∈ I , statements
(i) and (ii) hold:

(i) One of the two conditions (a1) and (a2) is true.

(ii) One of the two conditions (b1) and (b2) is true.

Conditions (a1), (a2), (b1) and (b2) are defined as follows:

(a1) ∃ j ∈ J, and MijLF ijSaij 6= 0 such that
Mij

LF ijSaij
≥
∑
a′∈A

f ∗a′ij + 1 and
∑
j ′∈J

f ∗aij = Uai .

(a2)
Mij

LF ijSaij
<
∑
a′∈A

f ∗a′ij + 1, ∀j ∈ J, MijLF ijSaij 6= 0.

(b1) ∃ j ∈ J, and MijLF ijSaij 6= 0 such that
PaijMij

Caij − Paij
< f ∗aij − 1 and

∑
j ′∈J

f ∗aij = Lai .

(b2)
PaijMij

Caij − Paij
≥ f ∗aij − 1, ∀j ∈ J, MijLF ijSaij 6= 0.
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Assumption and Result (conti’d)

Theorem (conti’d)

(b1) ∃ j ∈ J, and MijLF ijSaij 6= 0 such that
PaijMij

Caij − Paij
< f ∗aij − 1 and

∑
j ′∈J

f ∗aij = Lai .

(b2)
PaijMij

Caij − Paij
≥ f ∗aij − 1, ∀j ∈ J, MijLF ijSaij 6= 0.

We proved by contradiction.

This is a necessary condition for the existence of a pure-strategy Nash equilibrium.
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Assumption and Result (conti’d)

Corollary

If there exist a ∈ A and i ∈ I such that∑
j∈J

Mij

LF ijSaij
≥
∑
a′∈A

Ua′i + ‖J‖

and ∑
j∈J

PijMij

Caij − Paij
< Lai − ‖J‖ ,

then Nash equilibrium must not exist when Lai < Uai .

Corollary implies that we may not find a pure-strategy Nash equilibrium.
As done in this study, all parameters can be estimated with the data from the
BTS website to determine whether a pure-strategy Nash equilibrium can exist.
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Mixed-Strategy Game Formulation

Since a pure-strategy Nash equilibrium may not always exist, we reformulate the
problem using a mixed-strategy model.
A mixed strategy is an assignment of probability to each pure strategy. In a
simultaneous action game, the players decide their action simultaneously without
knowledge of each other’s decision.
We consider that each airline will expect other airlines’ total number of flights to
be the previous operations, and compute a reasonable strategy according to the
number. Airlines will simultaneously determine their own decisions based on these
strategies.

Symbol Description
πa (fa, fã) Profits of airline a with strategy profile (fa, fã), a ∈ A, ã ∈ A\{a}
πk

(
fk , fk̃

)
Profits of alliance k with strategy profile

(
fk , fk̃

)
, k ∈ K , k̃ ∈ K\{k}

ga (fa) Probability that airline a adopts strategy fa
gk (fk ) Probability that alliance k adopts strategy fk

Table: More Notation
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Airline’s optimization problem with mixed strategy—Model
II

maximize
ga(fa)

∑
(fa,fã)∈GA

πa(fa, fã) · ga(fa) ·
∏

ã∈A\{a}
gã(fã) (8)

subject to
∑
fa∈Na

ga(fa) = 1, (9)

ga(fa) ≥ 0, ∀fa ∈ Na. (10)

Constraint (9) implies that the
sum of probability that airline a
selects over the full set of
strategies equals one and
constraint (10) states that the
probability should be non-negative.

Mixed-strategy Nash equilibrium must exists. There might be multiple MSNE. To
compute one, we solve the following KKT system of all airlines∑

(fa,fã)∈GA

πa(fa, fã) ·
∏

ã∈A\{a}
gã(fã) + λa + µfa = 0, ∀a ∈ A, fa ∈ Na,

∑
fa∈Na

ga(fa) = 1, ∀a ∈ A,

ga(fa) ≥ 0, ∀a ∈ A, fa ∈ Na, µfa · ga(fa) = 0, ∀a ∈ A, fa ∈ Na, µfa ≥ 0, ∀fa ∈ Na,
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Frequency Competition Among Airlines on Coordinated Airports • § Model

Extend the model of the Airline Scenario to the Alliance
Scenario

In the objective function, we consider the
profits of alliance k .

maximize
gk (fk )

∑
(fk ,fk̃ )∈GK

πk (fk , fk̃ ) · gk (fk ) ·
∏

k̃∈K\{k}

gk̃ (fk̃ )

subject to
∑

fk∈Nk

gk (fk ) = 1,

gk (fk ) ≥ 0, ∀fk ∈ Nk ,

where the feasible strategy has the
centralized seat provision mechanism

Qaij ≤
faij∑

a∈A
faij

Mij , ∀a ∈ Uk , i ∈ I , j ∈ J,

∑
a∈Uk

Qaij ≤
∑
a∈Uk

LF ijSaij faij , ∀i ∈ I , j ∈ J,

∑
j∈J

faij ≤ Uai , ∀a ∈ Uk , i ∈ I ,

∑
j∈J

faij ≥ Lai , ∀a ∈ Uk , i ∈ I ,

∣∣∣∣∣∣
∑

j∈I\{d}
fadj −

∑
i∈I\{d}

faid

∣∣∣∣∣∣ ≤ ε, ∀a ∈ Uk , d ∈ I ,

faij ,Qaij ∈ Z+
0 , ∀a ∈ Uk , i ∈ I , j ∈ J.
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Frequency Competition Among Airlines on Coordinated Airports • § Empirical Analysis

Empirical Analysis::Input Parameters Estimation

All the data is downloaded from the Bureau of Transportation (BTS) website in
June, 2016.

Although our proposed equilibrium programming approach does not specify
borders limit and can be adopted for frequency analysis on domestic and
international airports networks, data of the U.S. airlines market is relatively open.

We focus on the departure of domestic flights from the three airports and on five
airlines which operate at least one of the 71, 92 and 77 segments departing from
JFK, DCA and LGA, respectively.

The five airlines are selected from three different alliances: SkyTeam (ST),
Oneworld (OW), and Star Alliance (SA).

The historical data for the airlines are used to conduct a model-based empirical
analysis.
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Frequency Competition Among Airlines on Coordinated Airports • § Empirical Analysis

Empirical Analysis::Feasible Strategy Generation

Enumerating strategies set of full size is unrealistic.

For five airlines and three alliances, one needs to store 55 and 93 entries of profits
πa and πk , respectively, which has reached our computer memory limits.

We let the total number of flights from airport i to j (i.e.,
∑
a∈A

faij) in constraint

(2) be a constant Tij , which is the total frequency from airport i to j in June
2016 according to BTS. We next add the objective to maximize the industry’s
total profits. By solving the revised maximization model, we obtain the first
strategy referred to as the centralized strategy.

We select competitive segments, i.e., segments operated by more than two airlines.
Perturb the centralized strategy randomly and generate the remaining strategies.
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Frequency Competition Among Airlines on Coordinated Airports • § Empirical Analysis

Empirical Analysis::Mixed Strategies (Airline Scenario)
Airline First strat-

egy
Second
strategy

Third
strategy

Fourth
strategy

Fifth strat-
egy

Expected
Profits

Expected
Pax

Expected
Profits per
Pax

(MSNEmax )
A 0.9479 0.0166 0.0166 0.0103 0.0084 30,020,000 176,941 169.6606
B 0.0017 0.0060 0.0188 0.0136 0.9597 108,755,000 696,093 156.2362
C 0.0143 0.0120 0.9489 0.0120 0.0126 141,392,000 708,078 199.6841
D 0.9702 0.0111 0.0055 0.0065 0.0065 21,345,100 111,487 191.4579
E 0.0932 0.4410 0.3140 0.1161 0.0354 10,862,700 130,419 83.2906

(MSNEmedian)
A 0.9892 0.0033 0.0033 0.0022 0.0018 30,037,900 177,046 169.6617
B 0.0039 0.0012 0.0037 0.0026 0.9884 108,730,000 696,006 156.2200
C 0.0031 0.0029 0.9879 0.0029 0.0029 141,376,000 707,988 199.6869
D 0.9924 0.0028 0.0014 0.0016 0.0016 21,353,000 111,532 191.4526
E 0.0152 0.8253 0.1334 0.0205 0.0053 10,877,500 131,314 82.8358

(MSNEmin)
A 0.9474 0.0167 0.0167 0.0104 0.0085 30,019,200 176,938 169.6597
B 0.0068 0.0056 0.0190 0.0131 0.9552 108,758,000 696,106 156.2378
C 0.0208 0.0153 0.9335 0.0153 0.0148 141,389,000 708,081 199.6791
D 0.9645 0.0137 0.0064 0.0076 0.0076 21,342,600 111,474 191.4572
E 0.1049 0.4006 0.3281 0.1322 0.0340 10,861,600 130,334 83.3366

Table: Probability distribution for each airline’s frequency strategy at three mixed-strategy
Nash equilibria
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Frequency Competition Among Airlines on Coordinated Airports • § Empirical Analysis

Empirical Analysis::Mixed Strategies (Alliance Scenario)

Alliance First strat-
egy

Second
strategy

Third
strategy

Fourth
strategy

Fifth strat-
egy

Sixth
strategy

Seventh
strategy

Eighth
strategy

Ninth
strategy

(MSNEmax )
ST 0.8426 0.0000 0.0000 0.0000 0.0000 0.0384 0.0279 0.0277 0.0631
OW 0.8995 0.0000 0.0000 0.0000 0.0000 0.0250 0.0253 0.0248 0.0251
SA 0.0941 0.0941 0.0941 0.0941 0.0436 0.1411 0.1428 0.1478 0.1478

(MSNEmedian)
ST 0.5555 0.0000 0.0000 0.0000 0.0000 0.0875 0.1228 0.0980 0.1359
OW 0.5941 0.0000 0.0000 0.0000 0.0000 0.1068 0.1279 0.0640 0.1069
SA 0.0000 0.0000 0.0000 0.0000 0.0000 0.2384 0.2444 0.2585 0.2585

(MSNEmin)
ST 0.0000 0.0000 0.0000 0.0000 0.0000 0.2492 0.2494 0.2505 0.2507
OW 0.0000 0.0000 0.0000 0.0000 0.0000 0.0729 0.3130 0.3126 0.3013
SA 0.0475 0.4706 0.0475 0.0475 0.0475 0.0571 0.0580 0.0572 0.1667

Table: Probability distribution of each alliance’s frequency strategy at three mixed-strategy
Nash equilibria
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Frequency Competition Among Airlines on Coordinated Airports • § Empirical Analysis

Empirical Analysis::Profits Comparisons

According to Figure, an airline may
not earn more profits under the mixed
strategy from the alliance scenario
than those from the airline scenario.

However, total profits earned by
airlines of an alliance under the mixed
strategy from the alliance scenario are
higher than those from the airline
scenario.

Through a reasonable revenues
allocation, the increase in profitability
gives airlines an incentive to form an
alliance.

Figure: Total industry’s profits
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Frequency Competition Among Airlines on Coordinated Airports • § Empirical Analysis

Empirical Analysis::Number of Passengers Comparisons

According to Figure, we find that
comparing to status quo, airlines will
serve more passengers under both
airline scenario and alliance scenario,
which is true for min, median and max
cases.

That is, with our algorithm, more
passengers will be served.

What’s more, forming alliance enables
the whole industry to serve more
passengers.

Figure: Total number of passengers
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Frequency Competition Among Airlines on Coordinated Airports • § Conclusion

Conclusions
Forming a pure strategy profile in frequency competition among airlines may
naturally lead to deviation from current frequency.
Our empirical results indicate that adopting a mixed strategy can increase total
industry’s profitability by 7.89%. We extend the model to formulate frequency
competition among neutral metal alliances and show that forming neutral metal
alliances can improve the total industry’s profits by 10.59%.
In particular, a sensitivity analysis on the tolerance level of flow imbalance shows
that deducting the potential costs due to the set of tolerance between congested
airports may generate 0.36% additional profits in frequency competition with real
data.
Although the lower limits of time slots usage is currently set according to the 80%
rule, the model we proposed has flexibility to set a smaller lower limit. In future
study, more complicated slots transactions between airlines including trading
and leasing can be taken into account in frequency competition.
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Competitive Demand Learning • § Introduction

Introduction about this work

Consider a total of F firms selling substitutable products in an oligopolistic
market, in which the true underlying demand curve and the presence of demand
shocks are unknown. Over a time horizon of T periods, firms make pricing
decisions in each period t = 1, · · · ,T .

The price decisions made by other firms will influence the demand for the product
of firm i .

By focusing on competition among the F firms, we do not consider capacity
limitation, production cost or marginal cost. Each firm is assumed to be selfish
and reacts immediately to price changes made by competitors.
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Competitive Demand Learning • § Introduction

Introduction about this work (conti’d)

This paper generalizes the work of Besbes and Zeevi (2015), who constructed a
dynamic pricing algorithm in a monopoly setting in which a single firm chooses a
price to maximize expected revenue without knowledge of the true underlying
demand curve.

We propose an equilibrium pricing algorithm to solve the dynamic pricing
decisions of each firm in competition.

In an alternative scenario, in which some firms have knowledge of the demand
function and the distribution of demand shocks, such firms may be unwilling to
engage in price experimentation. Therefore, we propose a modified DDEP
algorithm (in the full paper) to account for this.

The process of learning is often evaluated in terms of regrets.

We also analyze the revenue difference obtained by the algorithm from that
obtained by the clairvoyant Nash equilibrium p∗ per algorithm iteration.
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Competitive Demand Learning • § Competitive Demand Learning (CDL) Algorithm

Model and Preliminaries

We consider a periodical equilibrium pricing problem for F firms. In each period
t = 1, · · · ,T , each firm needs to set prices pit , chosen from a feasible and bounded
policy set P i =

[
pi ,`, pi ,h

]
, pi ,` < pi ,h, ∀i = 1, · · · ,F . The prices set by firms affect

the market response of all firms in the competition.

Recall that p ≡ (pi , p−i ) denotes the vector of prices of all firms in the competition.
The market response to the price pit for firm i at time t (which is exactly the demand
function) is given by D i

t(pt) = λi (pt) + εit , ∀i = 1, · · · ,N, in which λi (pt) is a
deterministic twice differentiable function representing the mean demand, conditional
on the price pt

εit are zero-mean random variables, assumed to be independent and identically
distributed.
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Competitive Demand Learning • § Competitive Demand Learning (CDL) Algorithm

Model and Preliminaries (conti’d)

Hence, the demand curve λi (p) of firm i not only depends on the price pi , chosen by
itself, but also on the prices of other firms p−i , where
p−i =

{
p1, · · · , pi−1, pi+1, · · · , pF

}
.

Let πi = (pi1, p
i
2, · · · ) denote the sequence of pricing policy of firm i and

Π = (π1, · · · , πF ) denote the admissible pricing policies of all firms.

The revenue function r i of firm i obtained from prices p is denoted by
r i (p) ≡ piE[D i (p)]. Each firm seeks to maximize its revenue in a competitive
environment.
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Model and Preliminaries (conti’d)

Throughout the paper, we use period t or, equivalently, time t.

Let pi∗t denote the equilibrium price of firm i at time t, which is obtained by the
estimated demand curve of firm i at time t, and let p−it denote the prices of other
competitors.

A clairvoyant model implies that a firm has knowledge of the underlying demand curve
and the distribution of demand shocks.

The goal of learning is to make pit converge to the clairvoyant equilibrium price of firm
i , pi∗, as t grows large. Note that a learning scheme in which the difference between
pit and pi∗ will eventually converge to zero is called complete learning; otherwise, it is
termed incomplete learning.
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Assumptions

(i) For any pi ∈ P i ,
∂λi (·, p−i )

∂pi
< 0,∀i = 1, · · · ,F .

(ii) For any pi ∈ P i ,
∂λi (pi , p−i\j , ·)

∂pj
> 0, ∀j 6= i , i = 1, · · · ,F .

(iii) For any pi ∈ P i ,
∂2r i (p)

∂2p
,∀i = 1, · · · ,F is a negative definite matrix.

(iv) For every r i (p),

F∑
j 6=i

∣∣∣∣ ∂2r i

∂pi∂pj

∣∣∣∣ < ∣∣∣∣∂2r i

∂pi2

∣∣∣∣ , ∀pi ∈ P i , pj ∈ P j .

(v) For every firm i , there exists a constant s0 such that, for all |s| < s0,
E
[
exp

{
sεi1
}]
<∞, and the variance of each firm’s εi is equal to σ2.

(vi) For every firm i , given p−i , firm i chooses to price at a pi ∈ P i satisfying
E
[
D i (pi , p−i )

]
≥ 0.
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Competitive Demand Learning (CDL) algorithm
loop n from 0 until a terminal stage, given as period T .

Step 0. Preparation: If n = 0, input I0, v , and p̂i1,∀i = 1, · · · ,F . If n > 0, set In = bI0vnc and δn = I
− 1

4
n .

Step 1: Setting prices. Loop m from 1 to F + 1. The rule of firm i ’s price pit at time t is

if m 6= i ,

pit = p̂in, ∀t = tn + 1, · · · , tn + iIn, tn + (i + 1)In + 1, · · · , tn + (F + 1)In,
if m = i ,

pit = p̂in + δn, ∀t = tn + iIn + 1, · · · , tn + (i + 1)In.

End the m-loop. Set tn+1 = tn + (F + 1)In.

Step 2. Estimating:

(α̂i
n+1, β̂

ij
n+1) = arg min

αi ,βij


t=tn+(F+1)In∑

t=tn+1

D i
t −

(
αi − βiipit +

F∑
j=1,j 6=i

βijpjt

)2 .
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Step 3. Computing the equilibrium: We define the following optimization problem for firm i :

max
pi

r in+1 ≡ max
pi

Gn+1

{
pi , p−i , α̂i

n+1, β̂
ij
n+1

}
, where Gn+1

{
pi , p−i , α̂i

n+1, β̂
i
n+1

}
≡

pi

α̂i
n+1 − β̂ii

n+1p
i +

F∑
j=1,j 6=i

β̂ij
n+1p

j

∣∣∣∣∣∣α̂i
n+1 − β̂ii

n+1p
i +

F∑
j=1,j 6=i

β̂ij
n+1p

j ≥ 0, pi ∈ P i

 . Proceeding to

solve the system: α̂i
n+1 − 2β̂ii

n+1p
i +

F∑
j,j 6=i

β̂ij
n+1p

j

+ µi,1
[
−β̂i

n+1

]
− µi,2 + µi,3 = 0 ∀i ,

µi,1 ≥ 0, µi,1 ·

−α̂i
n+1 + β̂ii

n+1p
i −

F∑
j,j 6=i

β̂ij
n+1p

j

 = 0, α̂i
n+1 − β̂ii

n+1p
i +

F∑
j,j 6=i

β̂ij
n+1p

j ≥ 0 ∀i ,

µi,2 ≥ 0, µi,2 ·
(
pi − pi,h

)
= 0, pi,h − pi ≥ 0 ∀i ,

µi,3 ≥ 0, µi,3 ·
(
pi,l − pi

)
= 0, pi − pi,l ≥ 0 ∀i .

Then, prices for each firm p̂in+1 are set to the unique solution of this system. Set n = n + 1 and return to
Step 0.
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Assumptions Implications

(i) ensures that for every firm i , the underlying demand function λi (·, p−i ) is strictly
decreasing on pi given the prices set by other firms, p−i .
(ii) dictates that λi (pi , p−i\j , ·) is strictly increasing on pj with pi and p−i\j given, in
which p−i\j represents the vector constituted by all prices except pi and pj .
(iii) dictates that the revenue function r i (p) is a concave function and thus there exists
a unique maximizer for any feasible p.
(iv) is termed as the “diagonal dominance” condition.
(v) ensures that the demand shock εit of each firm has a light-tailed distribution and
the homogeneity of variance.
(vi) ensures that each firm only considers a price within a price interval such that the
estimated demand is non-negative.
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Assumptions Examples

We give some examples of demand functions from that satisfy Assumption 2.(i).

1. Linear demand: λi (p) = αi − βiipi +
F∑

j=1,j 6=i

βijpj , βii > 0.

2. Multinomial logit demand: λi (p) = expα
i−βi pi

1+
F∑
i=1

expαi−βi pi
, αi > 0, βi > 0 and

αi − βipi < 0 for pi ∈ P i .
3. Cobb-Douglas demand: λi (p) = αi (pi )−β

ii ∏F
j 6=i (p

j)β
ij
, αi > 0, βii > 1, βij ≥ 0.

4. CES demand: λi (p) = γ(pi )r−1

F∑
j=1

(pj )r
, r < 0, γ > 0.
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Lemma 1: Analysis for the Noiseless Case.

Lemma 1

Suppose that εit = 0, ∀i and t, and that the sequence {p̂n}, assuming nonzero demand
and that the price is away from the limits, generated by CDL converges to a limit point

p̃, which satisfies p̃i = − λi (p̃)

∇piλ
i (p̃)

. Then, p̃ is exactly p∗.
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Lemma 2: Uniqueness of p̂n.

Lemma 2

Under the assumptions, p̂n is a unique GNE at stage n with high probability.
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Proposition 1

Proposition 1

If p′i = z i
(
ᾰi (pi , p−i ), β̆ii (pi , p−i ), β̆ij(pi , p−i )

)
for all i , then there exists a constant

γ ∈ (0, 1) such that
‖p∗ − z(p̂n)‖ ≤ γ ‖p∗ − p̂n‖ .

Proposition 1 is based on a deterministic (mean) demand function, and the
convergence result follows directly from the property of a contraction mapping. Now,
we focus on a randomized demand function and we aim to establish the convergence
result as follows.
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Proposition 2

Proposition 2

For any given p̂in ∈ P i generated by CDL, with high probability the following inequality
holds

‖z(p̂n)− p̂n+1‖ ≤ ‖Cn‖,

where Cn ≡
[
C 1
n , · · · ,CF

n

]
is a vector of constants.

Proposition 2 shows that the difference between these best response functions is
bounded with high probability. The probability lower bound is specified in the proof of
Proposition 3. Note that z(p̂n) denotes the collection of all firms’ best responses

z i
(
ᾰi (p̂n), β̆ii (p̂n), β̆ij(p̂n)

)
.
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Proposition 3

Proposition 3

At stage n, for some suitable constant K1, the operator z(p̂n) and the CDL generated
p̂n+1 satisfy

E
[
‖z(p̂n)− p̂n+1‖2

]
≤ F 2K1I

− 1
2

n .

Proposition 3 also provides an upper bound for the deviation between z(p̂n) and p̂n+1.
The upper bound is related to the squared number of competitive firms, F 2, and
converges to zero as the number of stages increases.
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Analysis: Convergence, Revenue Difference, and Regret

Theorem 1: Convergence

Under Assumptions, the GNE, p̂n converges in
probability to p∗ as n→∞.

The best response function derived
by CDL through the quadratic
concave function will generate the
sequence {pt} that converges to
p∗ as t grows large. (Theorem 1)
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Analysis: Convergence, Revenue Difference, and Regret

Theorem 2: Revenue Difference

Under Assumptions, the sequence of the generalized
Nash equilibrium {p̂t : t ≥ 1} satisfies

E

[
T∑
t=1

[ ∣∣r i (pi∗, p−i∗)− r i (pit , p
−i
t )
∣∣ ]] ≤ F 2K6T

1
2 ,

∀i = 1, · · · ,F ,

for some positive constant K6, T ≥ 2, and F ≥ 2.

The revenue difference converges
to zero as time progresses and is
related to the quantity of firms in
competition. The difference
implies that realised revenues are
sometimes greater than those
revenues obtained by the
clairvoyant Nash equilibrium p∗.
However, we are unable to predict
when this will occur. (Theorem 2)
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Analysis: Convergence, Revenue Difference, and Regret

Theorem 3: Regret

Under the defined assumptions, the sequence of
optimal decisions {pi∗t : t ≥ 1} satisfies

E

[
T∑
t=1

[
r i (pi∗t , p

−i
t )− r i (pit , p

−i
t )
]]
≤ K7FT

1
2 ,

∀i = 1, · · · ,F ,

for some positive constant K7, T ≥ 2 and F ≥ 2.

As time progresses, the
accumulated revenue of each firm
generated by the pricing policies of
CDL algorithm is asymptotically
close to the clairvoyant
accumulated revenue.
(Theorem 3)
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Concluding Remarks

We designed a mechanism of synchronized dynamic pricing. Such a mechanism
ensures that the pricing strategy of each firm is adjusted in a prescribed way to
jointly collect demand information and make pricing decisions.

We asked whether the mechanism may allow prices to reach a stable state and
how much regret firms incur by employing such a data-driven pricing algorithm.

In particular, the effects of noise vanish as n increases and that the fitted linear
model can serve as an estimation of the underlying demand model without being
affected by F .

When facing competition, the upper bound of revenue regret, derived in the same
way as that of one firm, is scaled by F (i.e., Theorem 3), the upper bound of
revenue difference is scaled by F 2 (i.e., Theorem 2), and the deviation between
the best responses and the clairvoyant GNE price is upper bounded by a factor of

F 2I
− 1

2
n
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